Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAttention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models
We investigate the internal behavior of Transformer-based Large Language Models (LLMs) when they generate factually incorrect text. We propose modeling factual queries as Constraint Satisfaction Problems and use this framework to investigate how the model interacts internally with factual constraints. Specifically, we discover a strong positive relation between the model's attention to constraint tokens and the factual accuracy of its responses. In our curated suite of 11 datasets with over 40,000 prompts, we study the task of predicting factual errors with the Llama-2 family across all scales (7B, 13B, 70B). We propose SAT Probe, a method probing self-attention patterns, that can predict constraint satisfaction and factual errors, and allows early error identification. The approach and findings demonstrate how using the mechanistic understanding of factuality in LLMs can enhance reliability.
Compositional Diffusion-Based Continuous Constraint Solvers
This paper introduces an approach for learning to solve continuous constraint satisfaction problems (CCSP) in robotic reasoning and planning. Previous methods primarily rely on hand-engineering or learning generators for specific constraint types and then rejecting the value assignments when other constraints are violated. By contrast, our model, the compositional diffusion continuous constraint solver (Diffusion-CCSP) derives global solutions to CCSPs by representing them as factor graphs and combining the energies of diffusion models trained to sample for individual constraint types. Diffusion-CCSP exhibits strong generalization to novel combinations of known constraints, and it can be integrated into a task and motion planner to devise long-horizon plans that include actions with both discrete and continuous parameters. Project site: https://diffusion-ccsp.github.io/
Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
Open Data Synthesis For Deep Research
Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in https://github.com/VectorSpaceLab/InfoSeek{this repository}.
FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn
ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning
We investigate the logical reasoning capabilities of large language models (LLMs) and their scalability in complex non-monotonic reasoning. To this end, we introduce ZebraLogic, a comprehensive evaluation framework for assessing LLM reasoning performance on logic grid puzzles derived from constraint satisfaction problems (CSPs). ZebraLogic enables the generation of puzzles with controllable and quantifiable complexity, facilitating a systematic study of the scaling limits of models such as Llama, o1 models, and DeepSeek-R1. By encompassing a broad range of search space complexities and diverse logical constraints, ZebraLogic provides a structured environment to evaluate reasoning under increasing difficulty. Our results reveal a significant decline in accuracy as problem complexity grows -- a phenomenon we term the curse of complexity. This limitation persists even with larger models and increased inference-time computation, suggesting inherent constraints in current LLM reasoning capabilities. Additionally, we explore strategies to enhance logical reasoning, including Best-of-N sampling, backtracking mechanisms, and self-verification prompts. Our findings offer critical insights into the scalability of LLM reasoning, highlight fundamental limitations, and outline potential directions for improvement.
BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models
Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/
Text2Zinc: A Cross-Domain Dataset for Modeling Optimization and Satisfaction Problems in MiniZinc
There is growing interest in utilizing large language models (LLMs) as co-pilots for combinatorial optimization and constraint programming tasks across various problems. This paper aims to advance this line of research by introducing Text2Zinc}, a cross-domain dataset for capturing optimization and satisfaction problems specified in natural language text. Our work is distinguished from previous attempts by integrating both satisfaction and optimization problems within a unified dataset using a solver-agnostic modeling language. To achieve this, we leverage MiniZinc's solver-and-paradigm-agnostic modeling capabilities to formulate these problems. Using the Text2Zinc dataset, we conduct comprehensive baseline experiments to compare execution and solution accuracy across several methods, including off-the-shelf prompting strategies, chain-of-thought reasoning, and a compositional approach. Additionally, we explore the effectiveness of intermediary representations, specifically knowledge graphs. Our findings indicate that LLMs are not yet a push-button technology to model combinatorial problems from text. We hope that Text2Zinc serves as a valuable resource for researchers and practitioners to advance the field further.
Evaluating Task-Oriented Dialogue Consistency through Constraint Satisfaction
Task-oriented dialogues must maintain consistency both within the dialogue itself, ensuring logical coherence across turns, and with the conversational domain, accurately reflecting external knowledge. We propose to conceptualize dialogue consistency as a Constraint Satisfaction Problem (CSP), wherein variables represent segments of the dialogue referencing the conversational domain, and constraints among variables reflect dialogue properties, including linguistic, conversational, and domain-based aspects. To demonstrate the feasibility of the approach, we utilize a CSP solver to detect inconsistencies in dialogues re-lexicalized by an LLM. Our findings indicate that: (i) CSP is effective to detect dialogue inconsistencies; and (ii) consistent dialogue re-lexicalization is challenging for state-of-the-art LLMs, achieving only a 0.15 accuracy rate when compared to a CSP solver. Furthermore, through an ablation study, we reveal that constraints derived from domain knowledge pose the greatest difficulty in being respected. We argue that CSP captures core properties of dialogue consistency that have been poorly considered by approaches based on component pipelines.
Large Language Model Meets Constraint Propagation
Large Language Models (LLMs) excel at generating fluent text but struggle to enforce external constraints because they generate tokens sequentially without explicit control mechanisms. GenCP addresses this limitation by combining LLM predictions with Constraint Programming (CP) reasoning, formulating text generation as a Constraint Satisfaction Problem (CSP). In this paper, we improve GenCP by integrating Masked Language Models (MLMs) for domain generation, which allows bidirectional constraint propagation that leverages both past and future tokens. This integration bridges the gap between token-level prediction and structured constraint enforcement, leading to more reliable and constraint-aware text generation. Our evaluation on COLLIE benchmarks demonstrates that incorporating domain preview via MLM calls significantly improves GenCP's performance. Although this approach incurs additional MLM calls and, in some cases, increased backtracking, the overall effect is a more efficient use of LLM inferences and an enhanced ability to generate feasible and meaningful solutions, particularly in tasks with strict content constraints.
QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases
We present a system for generating indoor scenes in response to text prompts. The prompts are not limited to a fixed vocabulary of scene descriptions, and the objects in generated scenes are not restricted to a fixed set of object categories -- we call this setting indoor scene generation. Unlike most prior work on indoor scene generation, our system does not require a large training dataset of existing 3D scenes. Instead, it leverages the world knowledge encoded in pre-trained large language models (LLMs) to synthesize programs in a domain-specific layout language that describe objects and spatial relations between them. Executing such a program produces a specification of a constraint satisfaction problem, which the system solves using a gradient-based optimization scheme to produce object positions and orientations. To produce object geometry, the system retrieves 3D meshes from a database. Unlike prior work which uses databases of category-annotated, mutually-aligned meshes, we develop a pipeline using vision-language models (VLMs) to retrieve meshes from massive databases of un-annotated, inconsistently-aligned meshes. Experimental evaluations show that our system outperforms generative models trained on 3D data for traditional, closed-universe scene generation tasks; it also outperforms a recent LLM-based layout generation method on open-universe scene generation.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
SPaRC: A Spatial Pathfinding Reasoning Challenge
Existing reasoning datasets saturate and fail to test abstract, multi-step problems, especially pathfinding and complex rule constraint satisfaction. We introduce SPaRC (Spatial Pathfinding Reasoning Challenge), a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning, requiring step-by-step planning with arithmetic and geometric rules. Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles). Models often generate invalid paths (>50% of puzzles for o4-mini), and reasoning tokens reveal they make errors in navigation and spatial logic. Unlike humans, who take longer on hard puzzles, models fail to scale test-time compute with difficulty. Allowing models to make multiple solution attempts improves accuracy, suggesting potential for better spatial reasoning with improved training and efficient test-time scaling methods. SPaRC can be used as a window into models' spatial reasoning limitations and drive research toward new methods that excel in abstract, multi-step problem-solving.
Holy Grail 2.0: From Natural Language to Constraint Models
Twenty-seven years ago, E. Freuder highlighted that "Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it". Nowadays, CP users have great modeling tools available (like Minizinc and CPMpy), allowing them to formulate the problem and then let a solver do the rest of the job, getting closer to the stated goal. However, this still requires the CP user to know the formalism and respect it. Another significant challenge lies in the expertise required to effectively model combinatorial problems. All this limits the wider adoption of CP. In this position paper, we investigate a possible approach to leverage pre-trained Large Language Models to extract models from textual problem descriptions. More specifically, we take inspiration from the Natural Language Processing for Optimization (NL4OPT) challenge and present early results with a decomposition-based prompting approach to GPT Models.
CP-Bench: Evaluating Large Language Models for Constraint Modelling
Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.
An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling Problems Based on Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm that allows for modeling and solving combinatorial optimization problems, such as the Job-Shop Scheduling Problem (JSSP). While CP solvers manage to find optimal or near-optimal solutions for small instances, they do not scale well to large ones, i.e., they require long computation times or yield low-quality solutions. Therefore, real-world scheduling applications often resort to fast, handcrafted, priority-based dispatching heuristics to find a good initial solution and then refine it using optimization methods. This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL). In contrast to previous RL methods, tailored for a given problem by including procedural simulation algorithms, complex feature engineering, or handcrafted reward functions, our neural-network architecture and training algorithm merely require a generic CP encoding of some scheduling problem along with a set of small instances. Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets. We evaluate our method on seven JSSP datasets from the literature, showing its ability to find higher-quality solutions for very large instances than obtained by static PDRs and by a CP solver within the same time limit.
KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval
We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.
Learning Shared Safety Constraints from Multi-task Demonstrations
Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks.
AutoTemplate: A Simple Recipe for Lexically Constrained Text Generation
Lexically constrained text generation is one of the constrained text generation tasks, which aims to generate text that covers all the given constraint lexicons. While the existing approaches tackle this problem using a lexically constrained beam search algorithm or dedicated model using non-autoregressive decoding, there is a trade-off between the generated text quality and the hard constraint satisfaction. We introduce AutoTemplate, a simple yet effective lexically constrained text generation framework divided into template generation and lexicalization tasks. The template generation is to generate the text with the placeholders, and lexicalization replaces them into the constraint lexicons to perform lexically constrained text generation. We conducted the experiments on two tasks: keywords-to-sentence generations and entity-guided summarization. Experimental results show that the AutoTemplate outperforms the competitive baselines on both tasks while satisfying the hard lexical constraints.
Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools
Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary. Project page: https://sites.google.com/view/llm-rwplanning.
VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning
Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, including mathematical reasoning. However, the current evaluation mostly focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing or contradictory conditions, known as ill-defined problems. To further study this problem, we develop a largescale benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems. Our preliminary experiments through PMC reveal two challenges about existing methods: (1) traditional methods exhibit a trade-off between solving accuracy and rejection capabilities, and (2) formal methods struggle with modeling complex problems. To address these challenges, We develop Variable-Constraint Search (VCSEARCH), a trainingfree framework that leverages formal language to detect ill-defined problems, where a variableconstraint pair search strategy is incorporated to improve the modeling capability of formal language. Extensive experiments demonstrate that VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different LLMs, thus achieving stronger robust mathematical reasoning ability.
Synthesizing mixed-integer linear programming models from natural language descriptions
Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.
Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming
While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.
Unprocessing Seven Years of Algorithmic Fairness
Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation.
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
Column Generation for Interaction Coverage in Combinatorial Software Testing
This paper proposes a novel column generation framework for combinatorial software testing. In particular, it combines Mathematical Programming and Constraint Programming in a hybrid decomposition to generate covering arrays. The approach allows generating parameterized test cases with coverage guarantees between parameter interactions of a given application. Compared to exhaustive testing, combinatorial test case generation reduces the number of tests to run significantly. Our column generation algorithm is generic and can accommodate mixed coverage arrays over heterogeneous alphabets. The algorithm is realized in practice as a cloud service and recognized as one of the five winners of the company-wide cloud application challenge at Oracle. The service is currently helping software developers from a range of different product teams in their testing efforts while exposing declarative constraint models and hybrid optimization techniques to a broader audience.
Is Computational Complexity a Barrier to Manipulation?
When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems.
A Multi-Dimensional Constraint Framework for Evaluating and Improving Instruction Following in Large Language Models
Instruction following evaluates large language models (LLMs) on their ability to generate outputs that adhere to user-defined constraints. However, existing benchmarks often rely on templated constraint prompts, which lack the diversity of real-world usage and limit fine-grained performance assessment. To fill this gap, we propose a multi-dimensional constraint framework encompassing three constraint patterns, four constraint categories, and four difficulty levels. Building on this framework, we develop an automated instruction generation pipeline that performs constraint expansion, conflict detection, and instruction rewriting, yielding 1,200 code-verifiable instruction-following test samples. We evaluate 19 LLMs across seven model families and uncover substantial variation in performance across constraint forms. For instance, average performance drops from 77.67% at Level I to 32.96% at Level IV. Furthermore, we demonstrate the utility of our approach by using it to generate data for reinforcement learning, achieving substantial gains in instruction following without degrading general performance. In-depth analysis indicates that these gains stem primarily from modifications in the model's attention modules parameters, which enhance constraint recognition and adherence. Code and data are available in https://github.com/Junjie-Ye/MulDimIF.
Moccasin: Efficient Tensor Rematerialization for Neural Networks
The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called Moccasin with only O(n) integer variables, where n is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with O(n^2) Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs.
Transformation-based Feature Computation for Algorithm Portfolios
Instance-specific algorithm configuration and algorithm portfolios have been shown to offer significant improvements over single algorithm approaches in a variety of application domains. In the SAT and CSP domains algorithm portfolios have consistently dominated the main competitions in these fields for the past five years. For a portfolio approach to be effective there are two crucial conditions that must be met. First, there needs to be a collection of complementary solvers with which to make a portfolio. Second, there must be a collection of problem features that can accurately identify structural differences between instances. This paper focuses on the latter issue: feature representation, because, unlike SAT, not every problem has well-studied features. We employ the well-known SATzilla feature set, but compute alternative sets on different SAT encodings of CSPs. We show that regardless of what encoding is used to convert the instances, adequate structural information is maintained to differentiate between problem instances, and that this can be exploited to make an effective portfolio-based CSP solver.
Quantum Relaxation for Solving Multiple Knapsack Problems
Combinatorial problems are a common challenge in business, requiring finding optimal solutions under specified constraints. While significant progress has been made with variational approaches such as QAOA, most problems addressed are unconstrained (such as Max-Cut). In this study, we investigate a hybrid quantum-classical method for constrained optimization problems, particularly those with knapsack constraints that occur frequently in financial and supply chain applications. Our proposed method relies firstly on relaxations to local quantum Hamiltonians, defined through commutative maps. Drawing inspiration from quantum random access code (QRAC) concepts, particularly Quantum Random Access Optimizer (QRAO), we explore QRAO's potential in solving large constrained optimization problems. We employ classical techniques like Linear Relaxation as a presolve mechanism to handle constraints and cope further with scalability. We compare our approach with QAOA and present the final results for a real-world procurement optimization problem: a significant sized multi-knapsack-constrained problem.
Testing and Understanding Erroneous Planning in LLM Agents through Synthesized User Inputs
Agents based on large language models (LLMs) have demonstrated effectiveness in solving a wide range of tasks by integrating LLMs with key modules such as planning, memory, and tool usage. Increasingly, customers are adopting LLM agents across a variety of commercial applications critical to reliability, including support for mental well-being, chemical synthesis, and software development. Nevertheless, our observations and daily use of LLM agents indicate that they are prone to making erroneous plans, especially when the tasks are complex and require long-term planning. In this paper, we propose PDoctor, a novel and automated approach to testing LLM agents and understanding their erroneous planning. As the first work in this direction, we formulate the detection of erroneous planning as a constraint satisfiability problem: an LLM agent's plan is considered erroneous if its execution violates the constraints derived from the user inputs. To this end, PDoctor first defines a domain-specific language (DSL) for user queries and synthesizes varying inputs with the assistance of the Z3 constraint solver. These synthesized inputs are natural language paragraphs that specify the requirements for completing a series of tasks. Then, PDoctor derives constraints from these requirements to form a testing oracle. We evaluate PDoctor with three mainstream agent frameworks and two powerful LLMs (GPT-3.5 and GPT-4). The results show that PDoctor can effectively detect diverse errors in agent planning and provide insights and error characteristics that are valuable to both agent developers and users. We conclude by discussing potential alternative designs and directions to extend PDoctor.
Order Matters: Investigate the Position Bias in Multi-constraint Instruction Following
Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs). An observation is that the LLMs exhibit dramatic performance fluctuation when disturbing the order of the incorporated constraints. Yet, none of the existing works has systematically investigated this position bias problem in the field of multi-constraint instruction following. To bridge this gap, we design a probing task where we quantitatively measure the difficulty distribution of the constraints by a novel Difficulty Distribution Index (CDDI). Through the experimental results, we find that LLMs are more performant when presented with the constraints in a ``hard-to-easy'' order. This preference can be generalized to LLMs with different architecture or different sizes of parameters. Additionally, we conduct an explanation study, providing an intuitive insight into the correlation between the LLM's attention and constraint orders. Our code and dataset are publicly available at https://github.com/meowpass/PBIF.
An approach for systematic decomposition of complex llm tasks
Large Language Models (LLMs) suffer from reliability issues on complex tasks, as existing decomposition methods are heuristic and rely on agent or manual decomposition. This work introduces a novel, systematic decomposition framework that we call Analysis of CONstraint-Induced Complexity (ACONIC), which models the task as a constraint problem and leveraging formal complexity measures to guide decomposition. On combinatorial (SATBench) and LLM database querying tasks (Spider), we find that by decomposing the tasks following the measure of complexity, agent can perform considerably better (10-40 percentage point).
Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.
From Instructions to Constraints: Language Model Alignment with Automatic Constraint Verification
User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.
ACCORD: Autoregressive Constraint-satisfying Generation for COmbinatorial Optimization with Routing and Dynamic attention
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, yet their direct application to NP-hard combinatorial problems (CPs) remains underexplored. In this work, we systematically investigate the reasoning abilities of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial optimization with Routing and Dynamic attention. ACCORD features a novel dataset representation and model architecture that leverage the autoregressive nature of LLMs to dynamically enforce feasibility constraints, coupled with attention-based routing to activate problem-specific LoRA modules. We also present the ACCORD-90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP, Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate that our ACCORD model, built on an 8B-parameter Llama backbone, consistently outperforms standard prompting and input-output methods, even when compared to much larger LLMs, such as gpt-4. Ablation studies further show that our output structure enhances solution feasibility. To the best of our knowledge, this is the first large-scale, end-to-end framework for exploring the applications of LLMs to a broad spectrum of combinatorial optimization problems. The codes are publicly available at https://github.com/starjob42/ACCORD
"I Want It That Way": Enabling Interactive Decision Support Using Large Language Models and Constraint Programming
A critical factor in the success of decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study (n=64) to characterize contextual scheduling preferences, a quantitative evaluation of the system's performance, and a user study (n=10) with a prototype system. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation and design considerations for building systems that support human-system collaborative decision-making processes.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
Rethinking Large Language Model Distillation: A Constrained Markov Decision Process Perspective
We introduce a novel approach to large language model (LLM) distillation by formulating it as a constrained reinforcement learning problem. While recent work has begun exploring the integration of task-specific rewards into distillation processes, existing methods typically rely on ad-hoc reward weighting. We propose a principled optimization framework that maximizes task-specific rewards while constraining the divergence from the teacher model to remain below a specified threshold. Our approach adapts constrained state augmented reinforcement learning to the distillation setting, introducing a modified reward function that maintains theoretical guarantees of constraint satisfaction without requiring state augmentation or teacher model access during deployment and without the computational overhead of the dual Lagrangian methods. Through extensive experiments on mathematical reasoning tasks, we demonstrate that our method achieves better constraint satisfaction rates and better reasoning compared to the soft Lagrangian relaxation baselines while maintaining competitive task performance. Our framework provides a theoretically grounded and practically efficient solution for reward-aware distillation in resource-constrained settings.
Adaptive Graph Shrinking for Quantum Optimization of Constrained Combinatorial Problems
A range of quantum algorithms, especially those leveraging variational parameterization and circuit-based optimization, are being studied as alternatives for solving classically intractable combinatorial optimization problems (COPs). However, their applicability is limited by hardware constraints, including shallow circuit depth, limited qubit counts, and noise. To mitigate these issues, we propose a hybrid classical--quantum framework based on graph shrinking to reduce the number of variables and constraints in QUBO formulations of COPs, while preserving problem structure. Our approach introduces three key ideas: (i) constraint-aware shrinking that prevents merges that will likely violate problem-specific feasibility constraints, (ii) a verification-and-repair pipeline to correct infeasible solutions post-optimization, and (iii) adaptive strategies for recalculating correlations and controlling the graph shrinking process. We apply our approach to three standard benchmark problems: Multidimensional Knapsack (MDKP), Maximum Independent Set (MIS), and the Quadratic Assignment Problem (QAP). Empirical results show that our approach improves solution feasibility, reduces repair complexity, and enhances quantum optimization quality on hardware-limited instances. These findings demonstrate a scalable pathway for applying near-term quantum algorithms to classically challenging constrained optimization problems.
On the Strength of Linear Relaxations in Ordered Optimization
We study the conditions under which the convex relaxation of a mixed-integer linear programming formulation for ordered optimization problems, where sorting is part of the decision process, yields integral optimal solutions. Thereby solving the problem exactly in polynomial time. Our analysis identifies structural properties of the input data that influence the integrality of the relaxation. We show that incorporating ordered components introduces additional layers of combinatorial complexity that invalidate the exactness observed in classical (non-ordered) settings. In particular, for certain ordered problems such as the min--max case, the linear relaxation never recovers the integral solution. These results clarify the intrinsic hardness introduced by sorting and reveal that the strength of the relaxation depends critically on the ``proximity'' of the ordered problem to its classical counterpart: problems closer to the non-ordered case tend to admit tighter relaxations, while those further away exhibit substantially weaker behavior. Computational experiments on benchmark instances confirm the predictive value of the integrality conditions and demonstrate the practical implications of exact relaxations for ordered location problems.
R-ConstraintBench: Evaluating LLMs on NP-Complete Scheduling
Effective scheduling under tight resource, timing, and operational constraints underpins large-scale planning across sectors such as capital projects, manufacturing, logistics, and IT fleet transitions. However, the reliability of large language models (LLMs) when reasoning under high-constraint regimes is insufficiently characterized. To address this gap, we present R-ConstraintBench, a scalable framework that evaluates models on Resource-Constrained Project Scheduling Problems (RCPSP), an NP-Complete feasibility class, while difficulty increases via linear growth in constraints. R-ConstraintBench incrementally increases non-redundant precedence constraints in Directed Acyclic Graphs (DAGs) and then introduces downtime, temporal windows, and disjunctive constraints. As an illustrative example, we instantiate the benchmark in a data center migration setting and evaluate multiple LLMs using feasibility and error analysis, identifying degradation thresholds and constraint types most associated with failure. Empirically, strong models are near-ceiling on precedence-only DAGs, but feasibility performance collapses when downtime, temporal windows, and disjunctive constraints interact, implicating constraint interaction, not graph depth, as the principal bottleneck. Performance on clean synthetic ramps also does not guarantee transfer to domain-grounded scenarios, underscoring limited generalization.
Cutting Slack: Quantum Optimization with Slack-Free Methods for Combinatorial Benchmarks
Constraint handling remains a key bottleneck in quantum combinatorial optimization. While slack-variable-based encodings are straightforward, they significantly increase qubit counts and circuit depth, challenging the scalability of quantum solvers. In this work, we investigate a suite of Lagrangian-based optimization techniques including dual ascent, bundle methods, cutting plane approaches, and augmented Lagrangian formulations for solving constrained combinatorial problems on quantum simulators and hardware. Our framework is applied to three representative NP-hard problems: the Travelling Salesman Problem (TSP), the Multi-Dimensional Knapsack Problem (MDKP), and the Maximum Independent Set (MIS). We demonstrate that MDKP and TSP, with their inequality-based or degree-constrained structures, allow for slack-free reformulations, leading to significant qubit savings without compromising performance. In contrast, MIS does not inherently benefit from slack elimination but still gains in feasibility and objective quality from principled Lagrangian updates. We benchmark these methods across classically hard instances, analyzing trade-offs in qubit usage, feasibility, and optimality gaps. Our results highlight the flexibility of Lagrangian formulations as a scalable alternative to naive QUBO penalization, even when qubit savings are not always achievable. This work provides practical insights for deploying constraint-aware quantum optimization pipelines, with applications in logistics, network design, and resource allocation.
WildIFEval: Instruction Following in the Wild
Recent LLMs have shown remarkable success in following user instructions, yet handling instructions with multiple constraints remains a significant challenge. In this work, we introduce WildIFEval - a large-scale dataset of 12K real user instructions with diverse, multi-constraint conditions. Unlike prior datasets, our collection spans a broad lexical and topical spectrum of constraints, in natural user prompts. We categorize these constraints into eight high-level classes to capture their distribution and dynamics in real-world scenarios. Leveraging WildIFEval, we conduct extensive experiments to benchmark the instruction-following capabilities of leading LLMs. Our findings reveal that all evaluated models experience performance degradation with an increasing number of constraints. Thus, we show that all models have a large room for improvement on such tasks. Moreover, we observe that the specific type of constraint plays a critical role in model performance. We release our dataset to promote further research on instruction-following under complex, realistic conditions.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
A Knowledge Representation Approach to Automated Mathematical Modelling
In this paper, we propose a new mixed-integer linear programming (MILP) model ontology and a novel constraint typology of MILP formulations. MILP is a commonly used mathematical programming technique for modelling and solving real-life scheduling, routing, planning, resource allocation, and timetabling optimization problems providing optimized business solutions for industry sectors such as manufacturing, agriculture, defence, healthcare, medicine, energy, finance, and transportation. Despite the numerous real-life Combinatorial Optimization Problems found and solved and millions yet to be discovered and formulated, the number of types of constraints (the building blocks of a MILP) is relatively small. In the search for a suitable machine-readable knowledge representation structure for MILPs, we propose an optimization modelling tree built based upon an MILP model ontology that can be used as a guide for automated systems to elicit an MILP model from end-users on their combinatorial business optimization problems. Our ultimate aim is to develop a machine-readable knowledge representation for MILP that allows us to map an end-user's natural language description of the business optimization problem to an MILP formal specification as a first step towards automated mathematical modelling.
Off-Policy Primal-Dual Safe Reinforcement Learning
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Thought of Search: Planning with Language Models Through The Lens of Efficiency
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
"We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Online Search Cost Estimation for SAT Solvers
We present two different methods for estimating the cost of solving SAT problems. The methods focus on the online behaviour of the backtracking solver, as well as the structure of the problem. Modern SAT solvers present several challenges to estimate search cost including coping with nonchronological backtracking, learning and restarts. Our first method adapt an existing algorithm for estimating the size of a search tree to deal with these challenges. We then suggest a second method that uses a linear model trained on data gathered online at the start of search. We compare the effectiveness of these two methods using random and structured problems. We also demonstrate that predictions made in early restarts can be used to improve later predictions. We conclude by showing that the cost of solving a set of problems can be reduced by selecting a solver from a portfolio based on such cost estimations.
Reduction Rules and ILP Are All You Need: Minimal Directed Feedback Vertex Set
This note describes the development of an exact solver for Minimal Directed Feedback Vertex Set as part of the PACE 2022 competition. The solver is powered largely by aggressively trying to reduce the DFVS problem to a Minimal Cover problem, and applying reduction rules adapted from Vertex Cover literature. The resulting problem is solved as an Integer Linear Program (ILP) using SCIP. The resulting solver performed the second-best in the competition, although a bug at submission time disqualified it. As an additional note, we describe a new vertex cover reduction generalizing the Desk reduction rule.
Logic.py: Bridging the Gap between LLMs and Constraint Solvers
We present a novel approach to formalise and solve search-based problems using large language models, which significantly improves upon previous state-of-the-art results. We demonstrate the efficacy of this approach on the logic puzzles benchmark ZebraLogicBench. Instead of letting the LLM attempt to directly solve the puzzles, our method prompts the model to formalise the problem in a logic-focused domain-specific language (DSL) called Logic.py. This formalised representation is then solved using a constraint solver, leveraging the strengths of both the language model and the solver. Our approach achieves a remarkable 65% absolute improvement over the baseline performance of Llama 3.1 70B on ZebraLogicBench, setting a new state-of-the-art with an accuracy of over 90%. This significant advancement demonstrates the potential of combining language models with domain-specific languages and auxiliary tools on traditionally challenging tasks for LLMs.
Programming Puzzles
We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program f, and the goal is to find an input which makes f return True. The puzzles are objective in that each one is specified entirely by the source code of its verifier f, so evaluating f is all that is needed to test a candidate solution. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems, to classic programming puzzles (e.g., Tower of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). We develop baseline enumerative program synthesis, GPT-3 and Codex solvers that are capable of solving puzzles -- even without access to any reference solutions -- by learning from their own past solutions. Codex performs best, solving up to 18% of 397 test problems with a single try and 80% of the problems with 1,000 tries per problem. In a small user study, we find a positive correlation between puzzle-solving performance and coding experience, and between the puzzle difficulty for humans and AI solvers. Therefore, further improvements on P3 could have a significant impact on many program synthesis areas.
Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width
Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with deterministic actions where they are automatically converted into classical ones and solved by an off-the-shelf classical planner. The translation maps literals L and sets of assumptions t about the initial situation, into new literals KL/t that represent that L must be true if t is initially true. We lay out a general translation scheme that is sound and establish the conditions under which the translation is also complete. We show that the complexity of the complete translation is exponential in a parameter of the problem called the conformant width, which for most benchmarks is bounded. The planner based on this translation exhibits good performance in comparison with existing planners, and is the basis for T0, the best performing planner in the Conformant Track of the 2006 International Planning Competition.
Automatically Auditing Large Language Models via Discrete Optimization
Auditing large language models for unexpected behaviors is critical to preempt catastrophic deployments, yet remains challenging. In this work, we cast auditing as an optimization problem, where we automatically search for input-output pairs that match a desired target behavior. For example, we might aim to find a non-toxic input that starts with "Barack Obama" that a model maps to a toxic output. This optimization problem is difficult to solve as the set of feasible points is sparse, the space is discrete, and the language models we audit are non-linear and high-dimensional. To combat these challenges, we introduce a discrete optimization algorithm, ARCA, that jointly and efficiently optimizes over inputs and outputs. Our approach automatically uncovers derogatory completions about celebrities (e.g. "Barack Obama is a legalized unborn" -> "child murderer"), produces French inputs that complete to English outputs, and finds inputs that generate a specific name. Our work offers a promising new tool to uncover models' failure-modes before deployment.
Partial Optimality in Cubic Correlation Clustering
The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.
Pushing the Limits of Rule Reasoning in Transformers through Natural Language Satisfiability
Investigating the reasoning abilities of transformer models, and discovering new challenging tasks for them, has been a topic of much interest. Recent studies have found these models to be surprisingly strong at performing deductive reasoning over formal logical theories expressed in natural language. A shortcoming of these studies, however, is that they do not take into account that logical theories, when sampled uniformly at random, do not necessarily lead to hard instances. We propose a new methodology for creating challenging algorithmic reasoning datasets that focus on natural language satisfiability (NLSat) problems. The key idea is to draw insights from empirical sampling of hard propositional SAT problems and from complexity-theoretic studies of language. This methodology allows us to distinguish easy from hard instances, and to systematically increase the complexity of existing reasoning benchmarks such as RuleTaker. We find that current transformers, given sufficient training data, are surprisingly robust at solving the resulting NLSat problems of substantially increased difficulty. They also exhibit some degree of scale-invariance - the ability to generalize to problems of larger size and scope. Our results, however, reveal important limitations too: a careful sampling of training data is crucial for building models that generalize to larger problems, and transformer models' limited scale-invariance suggests they are far from learning robust deductive reasoning algorithms.
CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems-a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agent frameworks against established human-designed algorithms, revealing key strengths and limitations of current approaches and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact algorithms, making them a tempting domain to apply machine learning methods. The highly structured constraints in these problems can hinder either optimization or sampling directly in the solution space. On the other hand, GFlowNets have recently emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially and have the potential to amortize such solution-searching processes in CO, as well as generate diverse solution candidates. In this paper, we design Markov decision processes (MDPs) for different combinatorial problems and propose to train conditional GFlowNets to sample from the solution space. Efficient training techniques are also developed to benefit long-range credit assignment. Through extensive experiments on a variety of different CO tasks with synthetic and realistic data, we demonstrate that GFlowNet policies can efficiently find high-quality solutions.
Chain of Thoughtlessness: An Analysis of CoT in Planning
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated by modifying prompts to include examples with chains of thought--demonstrations of solution procedures--with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examine the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations and depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially because of the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.
Dichotomic Pattern Mining with Applications to Intent Prediction from Semi-Structured Clickstream Datasets
We introduce a pattern mining framework that operates on semi-structured datasets and exploits the dichotomy between outcomes. Our approach takes advantage of constraint reasoning to find sequential patterns that occur frequently and exhibit desired properties. This allows the creation of novel pattern embeddings that are useful for knowledge extraction and predictive modeling. Finally, we present an application on customer intent prediction from digital clickstream data. Overall, we show that pattern embeddings play an integrator role between semi-structured data and machine learning models, improve the performance of the downstream task and retain interpretability.
ACPBench Hard: Unrestrained Reasoning about Action, Change, and Planning
The ACPBench dataset provides atomic reasoning tasks required for efficient planning. The dataset is aimed at distilling the complex plan generation task into separate atomic reasoning tasks in their easiest possible form, boolean or multiple-choice questions, where the model has to choose the right answer from the provided options. While the aim of ACPBench is to test the simplest form of reasoning about action and change, when tasked with planning, a model does not typically have options to choose from and thus the reasoning required for planning dictates an open-ended, generative form for these tasks. To that end, we introduce ACPBench Hard, a generative version of ACPBench, with open-ended questions which the model needs to answer. Models that perform well on these tasks could in principle be integrated into a planner or be used directly as a policy. We discuss the complexity of these tasks as well as the complexity of validating the correctness of their answers and present validation algorithms for each task. Equipped with these validators, we test the performance of a variety of models on our tasks and find that for most of these tasks the performance of even the largest models is still subpar. Our experiments show that no model outperforms another in these tasks and with a few exceptions all tested language models score below 65%, indicating that even the current frontier language models have a long way to go before they can reliably reason about planning. In fact, even the so-called reasoning models struggle with solving these reasoning tasks. ACPBench Hard collection is available at the following link: https://ibm.github.io/ACPBench
FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models
The ability to follow instructions is crucial for Large Language Models (LLMs) to handle various real-world applications. Existing benchmarks primarily focus on evaluating pure response quality, rather than assessing whether the response follows constraints stated in the instruction. To fill this research gap, in this paper, we propose FollowBench, a Multi-level Fine-grained Constraints Following Benchmark for LLMs. FollowBench comprehensively includes five different types (i.e., Content, Situation, Style, Format, and Example) of fine-grained constraints. To enable a precise constraint following estimation on diverse difficulties, we introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level. To assess whether LLMs' outputs have satisfied every individual constraint, we propose to prompt strong LLMs with constraint-evolution paths to handle challenging open-ended instructions. By evaluating ten closed-source and open-source popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work. The data and code are publicly available at https://github.com/YJiangcm/FollowBench.
Advanced Quantum Annealing Approach to Vehicle Routing Problems with Time Windows
In this paper, we explore the potential for quantum annealing to solve realistic routing problems. We focus on two NP-Hard problems, including the Traveling Salesman Problem with Time Windows and the Capacitated Vehicle Routing Problem with Time Windows. We utilize D-Wave's Quantum Annealer and Constrained Quadratic Model (CQM) solver within a hybrid framework to solve these problems. We demonstrate that while the CQM solver effectively minimizes route costs, it struggles to maintain time window feasibility as the problem size increases. To address this limitation, we implement a heuristic method that fixes infeasible solutions through a series of swapping operations. Testing on benchmark instances shows our method achieves promising results with an average optimality gap of 3.86%.
Beyond Solving Math Quiz: Evaluating the Ability of Large Reasoning Models to Ask for Information
Large Reasoning Models (LRMs) have demonstrated remarkable problem-solving abilities in mathematics, as evaluated by existing benchmarks exclusively on well-defined problems. However, such evaluation setup constitutes a critical gap, since a genuine intelligent agent should not only solve problems (as a math quiz solver), but also be able~to ask for information when the problems lack sufficient information, enabling proactivity in responding users' requests. To bridge such gap, we proposes a new dataset consisting of two types of incomplete problems with diverse contexts. Based on the dataset, our systematical evaluation of LRMs reveals their inability in proactively asking for information. In addition, we uncover the behaviors related to overthinking and hallucination of LRMs, and highlight the potential and challenges of supervised fine-tuning in learning such ability. We hope to provide new insights in developing LRMs with genuine intelligence, rather than just solving problems.
Less is More Tokens: Efficient Math Reasoning via Difficulty-Aware Chain-of-Thought Distillation
Chain-of-thought reasoning, while powerful, can produce unnecessarily verbose output for simpler problems. We present a framework for difficulty-aware reasoning that teaches models to dynamically adjust reasoning depth based on problem complexity. Remarkably, we show that models can be endowed with such dynamic inference pathways without any architectural modifications; we simply post-train on data that is carefully curated to include chain-of-thought traces that are proportional in length to problem difficulty. Our analysis reveals that post-training via supervised fine-tuning (SFT) primarily captures patterns like reasoning length and format, while direct preference optimization (DPO) preserves reasoning accuracy, with their combination reducing length and maintaining or improving performance. Both quantitative metrics and qualitative assessments confirm that models can learn to "think proportionally", reasoning minimally on simple problems while maintaining depth for complex ones.
Scaling up ML-based Black-box Planning with Partial STRIPS Models
A popular approach for sequential decision-making is to perform simulator-based search guided with Machine Learning (ML) methods like policy learning. On the other hand, model-relaxation heuristics can guide the search effectively if a full declarative model is available. In this work, we consider how a practitioner can improve ML-based black-box planning on settings where a complete symbolic model is not available. We show that specifying an incomplete STRIPS model that describes only part of the problem enables the use of relaxation heuristics. Our findings on several planning domains suggest that this is an effective way to improve ML-based black-box planning beyond collecting more data or tuning ML architectures.
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.
Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics
We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.
Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning
Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.
On Zero-Shot Reinforcement Learning
Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
OptiMUS: Optimization Modeling Using MIP Solvers and large language models
Optimization problems are pervasive across various sectors, from manufacturing and distribution to healthcare. However, most such problems are still solved heuristically by hand rather than optimally by state-of-the-art solvers, as the expertise required to formulate and solve these problems limits the widespread adoption of optimization tools and techniques. We introduce OptiMUS, a Large Language Model (LLM)-based agent designed to formulate and solve MILP problems from their natural language descriptions. OptiMUS is capable of developing mathematical models, writing and debugging solver code, developing tests, and checking the validity of generated solutions. To benchmark our agent, we present NLP4LP, a novel dataset of linear programming (LP) and mixed integer linear programming (MILP) problems. Our experiments demonstrate that OptiMUS solves nearly twice as many problems as a basic LLM prompting strategy. OptiMUS code and NLP4LP dataset are available at https://github.com/teshnizi/OptiMUS{https://github.com/teshnizi/OptiMUS}
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control. Given a training corpus and control criteria formulated as a sequence-level constraint on model outputs, our method fine-tunes the LLM on the training corpus while enhancing constraint satisfaction with minimal impact on its utility and generation quality. Specifically, our approach regularizes the LLM training by penalizing the KL divergence between the desired output distribution, which satisfies the constraints, and the LLM's posterior. This regularization term can be approximated by an auxiliary model trained to decompose the sequence-level constraints into token-level guidance, allowing the term to be measured by a closed-form formulation. To further improve efficiency, we design a parallel scheme for concurrently updating both the LLM and the auxiliary model. We evaluate the empirical performance of our approach by controlling the toxicity when training an LLM. We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
CaT: Constraints as Terminations for Legged Locomotion Reinforcement Learning
Deep Reinforcement Learning (RL) has demonstrated impressive results in solving complex robotic tasks such as quadruped locomotion. Yet, current solvers fail to produce efficient policies respecting hard constraints. In this work, we advocate for integrating constraints into robot learning and present Constraints as Terminations (CaT), a novel constrained RL algorithm. Departing from classical constrained RL formulations, we reformulate constraints through stochastic terminations during policy learning: any violation of a constraint triggers a probability of terminating potential future rewards the RL agent could attain. We propose an algorithmic approach to this formulation, by minimally modifying widely used off-the-shelf RL algorithms in robot learning (such as Proximal Policy Optimization). Our approach leads to excellent constraint adherence without introducing undue complexity and computational overhead, thus mitigating barriers to broader adoption. Through empirical evaluation on the real quadruped robot Solo crossing challenging obstacles, we demonstrate that CaT provides a compelling solution for incorporating constraints into RL frameworks. Videos and code are available at https://constraints-as-terminations.github.io.
TCP: a Benchmark for Temporal Constraint-Based Planning
Temporal reasoning and planning are essential capabilities for large language models (LLMs), yet most existing benchmarks evaluate them in isolation and under limited forms of complexity. To address this gap, we introduce the Temporal Constraint-based Planning (TCP) benchmark, that jointly assesses both capabilities. Each instance in TCP features a naturalistic dialogue around a collaborative project, where diverse and interdependent temporal constraints are explicitly or implicitly expressed, and models must infer an optimal schedule that satisfies all constraints. To construct TCP, we first generate abstract problem prototypes that are paired with realistic scenarios from various domains and enriched into dialogues using an LLM. A human quality check is performed on a sampled subset to confirm the reliability of our benchmark. We evaluate state-of-the-art LLMs and find that even the strongest models struggle with TCP, highlighting its difficulty and revealing limitations in LLMs' temporal constraint-based planning abilities. We analyze underlying failure cases, open source our benchmark, and hope our findings can inspire future research.
OptiMUS: Scalable Optimization Modeling with (MI)LP Solvers and Large Language Models
Optimization problems are pervasive in sectors from manufacturing and distribution to healthcare. However, most such problems are still solved heuristically by hand rather than optimally by state-of-the-art solvers because the expertise required to formulate and solve these problems limits the widespread adoption of optimization tools and techniques. This paper introduces OptiMUS, a Large Language Model (LLM)-based agent designed to formulate and solve (mixed integer) linear programming problems from their natural language descriptions. OptiMUS can develop mathematical models, write and debug solver code, evaluate the generated solutions, and improve its model and code based on these evaluations. OptiMUS utilizes a modular structure to process problems, allowing it to handle problems with long descriptions and complex data without long prompts. Experiments demonstrate that OptiMUS outperforms existing state-of-the-art methods on easy datasets by more than 20% and on hard datasets (including a new dataset, NLP4LP, released with this paper that features long and complex problems) by more than 30%.
COLLIE: Systematic Construction of Constrained Text Generation Tasks
Text generation under constraints have seen increasing interests in natural language processing, especially with the rapidly improving capabilities of large language models. However, existing benchmarks for constrained generation usually focus on fixed constraint types (e.g.,generate a sentence containing certain words) that have proved to be easy for state-of-the-art models like GPT-4. We present COLLIE, a grammar-based framework that allows the specification of rich, compositional constraints with diverse generation levels (word, sentence, paragraph, passage) and modeling challenges (e.g.,language understanding, logical reasoning, counting, semantic planning). We also develop tools for automatic extraction of task instances given a constraint structure and a raw text corpus. Using COLLIE, we compile the COLLIE-v1 dataset with 2080 instances comprising 13 constraint structures. We perform systematic experiments across five state-of-the-art instruction-tuned language models and analyze their performances to reveal shortcomings. COLLIE is designed to be extensible and lightweight, and we hope the community finds it useful to develop more complex constraints and evaluations in the future.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
Comment on The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit "accuracy collapse" on planning puzzles beyond certain complexity thresholds. We demonstrate that their findings primarily reflect experimental design limitations rather than fundamental reasoning failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments systematically exceed model output token limits at reported failure points, with models explicitly acknowledging these constraints in their outputs; (2) The authors' automated evaluation framework fails to distinguish between reasoning failures and practical constraints, leading to misclassification of model capabilities; (3) Most concerningly, their River Crossing benchmarks include mathematically impossible instances for N > 5 due to insufficient boat capacity, yet models are scored as failures for not solving these unsolvable problems. When we control for these experimental artifacts, by requesting generating functions instead of exhaustive move lists, preliminary experiments across multiple models indicate high accuracy on Tower of Hanoi instances previously reported as complete failures. These findings highlight the importance of careful experimental design when evaluating AI reasoning capabilities.
Large Language Models and Mathematical Reasoning Failures
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
Branch-Solve-Merge Improves Large Language Model Evaluation and Generation
Large Language Models (LLMs) are frequently used for multi-faceted language generation and evaluation tasks that involve satisfying intricate user constraints or taking into account multiple aspects and criteria. However, their performance can fall short, due to the model's lack of coherence and inability to plan and decompose the problem. We propose Branch-Solve-Merge (BSM), a Large Language Model program (Schlag et al., 2023) for tackling such challenging natural language tasks. It consists of branch, solve, and merge modules that are parameterized with specific prompts to the base LLM. These three modules plan a decomposition of the task into multiple parallel sub-tasks, independently solve them, and fuse the solutions to the sub-tasks. We apply our method to the tasks of LLM response evaluation and constrained text generation and evaluate its effectiveness with multiple LLMs, including Vicuna, LLaMA-2-chat, and GPT-4. BSM improves the evaluation correctness and consistency for each LLM by enhancing human-LLM agreement by up to 26%, reducing length and pairwise position biases by up to 50%, and allowing LLaMA-2-chat to match or outperform GPT-4 on most domains. On the constraint story generation task, BSM improves the coherence of the stories while also improving constraint satisfaction by 12%.
Strategy Proof Mechanisms for Facility Location with Capacity Limits
An important feature of many real world facility location problems are capacity limits on the facilities. We show here how capacity constraints make it harder to design strategy proof mechanisms for facility location, but counter-intuitively can improve the guarantees on how well we can approximate the optimal solution.
Online Estimation of SAT Solving Runtime
We present an online method for estimating the cost of solving SAT problems. Modern SAT solvers present several challenges to estimate search cost including non-chronological backtracking, learning and restarts. Our method uses a linear model trained on data gathered at the start of search. We show the effectiveness of this method using random and structured problems. We demonstrate that predictions made in early restarts can be used to improve later predictions. We also show that we can use such cost estimations to select a solver from a portfolio.
NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions
The Natural Language for Optimization (NL4Opt) Competition was created to investigate methods of extracting the meaning and formulation of an optimization problem based on its text description. Specifically, the goal of the competition is to increase the accessibility and usability of optimization solvers by allowing non-experts to interface with them using natural language. We separate this challenging goal into two sub-tasks: (1) recognize and label the semantic entities that correspond to the components of the optimization problem; (2) generate a meaning representation (i.e., a logical form) of the problem from its detected problem entities. The first task aims to reduce ambiguity by detecting and tagging the entities of the optimization problems. The second task creates an intermediate representation of the linear programming (LP) problem that is converted into a format that can be used by commercial solvers. In this report, we present the LP word problem dataset and shared tasks for the NeurIPS 2022 competition. Furthermore, we investigate and compare the performance of the ChatGPT large language model against the winning solutions. Through this competition, we hope to bring interest towards the development of novel machine learning applications and datasets for optimization modeling.
A Hierarchical and Evolvable Benchmark for Fine-Grained Code Instruction Following with Multi-Turn Feedback
Large language models (LLMs) have advanced significantly in code generation, yet their ability to follow complex programming instructions with layered and diverse constraints remains underexplored. Existing benchmarks often prioritize functional correctness, overlooking the nuanced requirements found in real-world development. We introduce MultiCodeIF, a comprehensive benchmark designed to evaluate instruction-following in code generation across multiple dimensions: constraint type, hierarchical levels, and iterative refinement. Built upon a structured taxonomy of 9 categories and 27 constraint types, MultiCodeIF enables granular assessment of both functional and non-functional instruction adherence. Using an automated pipeline, ConstraGen, we synthesize and evolve 2,021 code tasks sourced from 14 programming languages, supporting multi-turn evaluation through feedback-driven task variants. Empirical evaluation of six state-of-the-art LLMs uncovers substantial performance disparities. The top-performing model, Claude-3-7-Sonnet, achieves 63.0% average constraint satisfaction, while smaller models like Qwen3-1.7B fall to 44.8%. Models perform well on explicit constraints, but struggle with implicit or abstract constraints. Tasks with multiple hierarchical constraints significantly reduce model success rates, from 54.5% in single-level to just 18.8% in multi-level scenarios. However, structured feedback enables progressive improvement: average constraint satisfaction rises from 63.0% to 83.4% over four iterative refinement rounds. MultiCodeIF provides a scalable, constraint-aware, and feedback-sensitive framework to benchmark LLMs under realistic code generation scenarios, bridging the gap between synthetic evaluations and real-world instruction complexity. The full benchmark dataset, evaluation pipeline, and source code are available at https://github.com/SYSUSELab/MultiCodeIF.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
PPM: Automated Generation of Diverse Programming Problems for Benchmarking Code Generation Models
In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. In this work, we propose the idea of programming problem merging (PPM) and provide two implementation of this idea, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines.
Maximum Causal Entropy Inverse Constrained Reinforcement Learning
When deploying artificial agents in real-world environments where they interact with humans, it is crucial that their behavior is aligned with the values, social norms or other requirements of that environment. However, many environments have implicit constraints that are difficult to specify and transfer to a learning agent. To address this challenge, we propose a novel method that utilizes the principle of maximum causal entropy to learn constraints and an optimal policy that adheres to these constraints, using demonstrations of agents that abide by the constraints. We prove convergence in a tabular setting and provide an approximation which scales to complex environments. We evaluate the effectiveness of the learned policy by assessing the reward received and the number of constraint violations, and we evaluate the learned cost function based on its transferability to other agents. Our method has been shown to outperform state-of-the-art approaches across a variety of tasks and environments, and it is able to handle problems with stochastic dynamics and a continuous state-action space.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Large Language Model for Science: A Study on P vs. NP
In this work, we use large language models (LLMs) to augment and accelerate research on the P versus NP problem, one of the most important open problems in theoretical computer science and mathematics. Specifically, we propose Socratic reasoning, a general framework that promotes in-depth thinking with LLMs for complex problem-solving. Socratic reasoning encourages LLMs to recursively discover, solve, and integrate problems while facilitating self-evaluation and refinement. Our pilot study on the P vs. NP problem shows that GPT-4 successfully produces a proof schema and engages in rigorous reasoning throughout 97 dialogue turns, concluding "P neq NP", which is in alignment with (Xu and Zhou, 2023). The investigation uncovers novel insights within the extensive solution space of LLMs, shedding light on LLM for Science.
SATBench: Benchmarking LLMs' Logical Reasoning via Automated Puzzle Generation from SAT Formulas
We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a story context and conditions using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-assisted and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. SATBench exposes fundamental limitations in the search-based logical reasoning abilities of current LLMs and provides a scalable testbed for future research in logical reasoning.
Queueing Systems with Preferred Service Delivery Times and Multiple Customer Classes
Motivated by the operational problems in click and collect systems, such as curbside pickup programs, we study a joint admission control and capacity allocation problem. We consider a system where arriving customers have preferred service delivery times and gauge the service quality based on the service provider's ability to complete the service as close as possible to the preferred time. Customers can be of different priority classes, and their priority may increase as they wait longer in the queue. The service provider can reject customers upon their arrival if the system is overloaded or outsource the service (alternatively work overtime) when the capacity is not enough. The service provider's goal is to find the minimum-cost admission and capacity allocation policy to dynamically decide when to serve and whom to serve. We model this problem as a Markov Decision Process. Our structural results partially characterize a set of suboptimal solutions, and we develop solution methods using these results. We also develop a problem-specific approximation method that is based on state aggregation to overcome the computational challenges. We present extensive computational results and discuss the impact of problem parameters on the optimal policy.
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
In recent years, Reinforcement Learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agent's behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems.
ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution
The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a novel integration of evolutionary search for efficiently exploring the heuristic space, and LLM reflections to provide verbal gradients within the space. Across five heterogeneous algorithmic types, six different COPs, and both white-box and black-box views of COPs, ReEvo yields state-of-the-art and competitive meta-heuristics, evolutionary algorithms, heuristics, and neural solvers, while being more sample-efficient than prior LHHs.
GPT-4 Doesn't Know It's Wrong: An Analysis of Iterative Prompting for Reasoning Problems
There has been considerable divergence of opinion on the reasoning abilities of Large Language Models (LLMs). While the initial optimism that reasoning might emerge automatically with scale has been tempered thanks to a slew of counterexamples, a wide spread belief in their iterative self-critique capabilities persists. In this paper, we set out to systematically investigate the effectiveness of iterative prompting of LLMs in the context of Graph Coloring, a canonical NP-complete reasoning problem that is related to propositional satisfiability as well as practical problems like scheduling and allocation. We present a principled empirical study of the performance of GPT4 in solving graph coloring instances or verifying the correctness of candidate colorings. In iterative modes, we experiment with the model critiquing its own answers and an external correct reasoner verifying proposed solutions. In both cases, we analyze whether the content of the criticisms actually affects bottom line performance. The study seems to indicate that (i) LLMs are bad at solving graph coloring instances (ii) they are no better at verifying a solution--and thus are not effective in iterative modes with LLMs critiquing LLM-generated solutions (iii) the correctness and content of the criticisms--whether by LLMs or external solvers--seems largely irrelevant to the performance of iterative prompting. We show that the observed increase in effectiveness is largely due to the correct solution being fortuitously present in the top-k completions of the prompt (and being recognized as such by an external verifier). Our results thus call into question claims about the self-critiquing capabilities of state of the art LLMs.
DeAL: Decoding-time Alignment for Large Language Models
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences. Current work focuses on alignment at model training time, through techniques such as Reinforcement Learning with Human Feedback (RLHF). However, it is unclear if such methods are an effective choice to teach alignment objectives to the model. First, the inability to incorporate multiple, custom rewards and reliance on a model developer's view of universal and static principles are key limitations. Second, the residual gaps in model training and the reliability of such approaches are also questionable (e.g. susceptibility to jail-breaking even after safety training). To address these, we propose DeAL, a framework that allows the user to customize reward functions and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view decoding as a heuristic-guided search process and facilitate the use of a wide variety of alignment objectives. Our experiments with programmatic constraints such as keyword and length constraints (studied widely in the pre-LLM era) and abstract objectives such as harmlessness and helpfulness (proposed in the post-LLM era) show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs. Lastly, while DeAL can be effectively paired with RLHF and prompting techniques, its generality makes decoding slower, an optimization we leave for future work.
Solving The Travelling Salesmen Problem using HNN and HNN-SA algorithms
In this case study, the renowned Travelling Salesmen problem has been studied. Travelling Salesman problem is a most demanding computational problem in Computer Science. The Travelling Salesmen problem has been solved by two different ways using Hopfield Network. The main theory of the problem is to find distance and connectedness between nodes in a graph having edges between the nodes. The basic algorithm used for this problem is Djikstra's Algorithm. But till now , a number of such algorithms have evolved. Among them(some other algorithms) , are distinct and have been proved to solve the travelling salesmen problem by graph theory.
Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
A Survey of Methods for Automated Algorithm Configuration
Algorithm configuration (AC) is concerned with the automated search of the most suitable parameter configuration of a parametrized algorithm. There is currently a wide variety of AC problem variants and methods proposed in the literature. Existing reviews do not take into account all derivatives of the AC problem, nor do they offer a complete classification scheme. To this end, we introduce taxonomies to describe the AC problem and features of configuration methods, respectively. We review existing AC literature within the lens of our taxonomies, outline relevant design choices of configuration approaches, contrast methods and problem variants against each other, and describe the state of AC in industry. Finally, our review provides researchers and practitioners with a look at future research directions in the field of AC.
An Approximation Algorithm for Monotone Submodular Cost Allocation
In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed.
Long Is More Important Than Difficult for Training Reasoning Models
Difficult problems, which often result in long reasoning traces, are widely recognized as key factors for enhancing the performance of reasoning models. However, such high-challenge problems are scarce, limiting the size of available datasets. In this paper, we propose a simple method to decouple the reliance on problem difficulty. First, we empirically demonstrate that reasoning length, rather than problem difficulty, primarily influences the performance of trained models. Second, we identify a scaling law on reasoning length, showing that model performance increases in a log-linear fashion as the reasoning data length grows. Finally, we introduce a straightforward technique to generate reasoning data of arbitrary length, and show that synthesized data is effective for training reasoning models. After fine-tuning the Qwen2.5-32B-Instruct language model on our Long1K dataset, we present our model, Long1K-32B, which achieves remarkable performance with only 1,000 training samples, achieving 95.6\% accuracy on MATH, and 71.1\% on GPQA outperforming DeepSeek-R1-Distill-Qwen-32B. The model, code, and dataset are all open-sourced, available at https://huggingface.co/ZTss/LONG1.
Priority Matters: Optimising Kubernetes Clusters Usage with Constraint-Based Pod Packing
Distributed applications employ Kubernetes for scalable, fault-tolerant deployments over computer clusters, where application components run in groups of containers called pods. The scheduler, at the heart of Kubernetes' architecture, determines the placement of pods given their priority and resource requirements on cluster nodes. To quickly allocate pods, the scheduler uses lightweight heuristics that can lead to suboptimal placements and resource fragmentation, preventing allocations of otherwise deployable pods on the available nodes. We propose the usage of constraint programming to find the optimal allocation of pods satisfying all their priorities and resource requests. Implementation-wise, our solution comes as a plug-in to the default scheduler that operates as a fallback mechanism when some pods cannot be allocated. Using the OR-Tools constraint solver, our experiments on small-to-mid-sized clusters indicate that, within a 1-second scheduling window, our approach places more higher-priority pods than the default scheduler (possibly demonstrating allocation optimality) in over 44\% of realisable allocation scenarios where the default scheduler fails, while certifying that the default scheduler's placement is already optimal in over 19\% of scenarios. With a 10-second window, our approach improves placements in over 73\% and still certifies that the default scheduler's placement is already optimal in over 19\% of scenarios.
Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterations
As first-order optimization methods become the method of choice for solving large-scale optimization problems, optimization solvers based on first-order algorithms are being built. Such general-purpose solvers must robustly detect infeasible or misspecified problem instances, but the computational complexity of first-order methods for doing so has yet to be formally studied. In this work, we characterize the optimal accelerated rate of infeasibility detection. We show that the standard fixed-point iteration achieves a O(1/k^2) and O(1/k) rates, respectively, on the normalized iterates and the fixed-point residual converging to the infimal displacement vector, while the accelerated fixed-point iteration achieves O(1/k^2) and mathcal{O}(1/k^2) rates. We then provide a matching complexity lower bound to establish that Theta(1/k^2) is indeed the optimal accelerated rate.
EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations
A fundamental problem in combinatorial optimization is identifying equivalent formulations, which can lead to more efficient solution strategies and deeper insights into a problem's computational complexity. The need to automatically identify equivalence between problem formulations has grown as optimization copilots--systems that generate problem formulations from natural language descriptions--have proliferated. However, existing approaches to checking formulation equivalence lack grounding, relying on simple heuristics which are insufficient for rigorous validation. Inspired by Karp reductions, in this work we introduce quasi-Karp equivalence, a formal criterion for determining when two optimization formulations are equivalent based on the existence of a mapping between their decision variables. We propose EquivaMap, a framework that leverages large language models to automatically discover such mappings, enabling scalable and reliable equivalence verification. To evaluate our approach, we construct the first open-source dataset of equivalent optimization formulations, generated by applying transformations such as adding slack variables or valid inequalities to existing formulations. Empirically, EquivaMap significantly outperforms existing methods, achieving substantial improvements in correctly identifying formulation equivalence.
Language Models Can Teach Themselves to Program Better
Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. The LM's performance is then seen to improve when it is fine-tuned on its own synthetic problems and verified solutions; thus the model 'improves itself' using the Python interpreter. Problems are specified formally as programming puzzles [Schuster et al., 2021], a code-based problem format where solutions can easily be verified for correctness by execution. In experiments on publicly-available LMs, test accuracy more than doubles. This work demonstrates the potential for code LMs, with an interpreter, to generate instructive problems and improve their own performance.
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
Constrained Monotonic Neural Networks
Wider adoption of neural networks in many critical domains such as finance and healthcare is being hindered by the need to explain their predictions and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain signs on its weights. Unfortunately, this construction does not work with popular non-saturated activation functions as it can only approximate convex functions. We show this shortcoming can be fixed by constructing two additional activation functions from a typical unsaturated monotonic activation function and employing each of them on the part of neurons. Our experiments show this approach of building monotonic neural networks has better accuracy when compared to other state-of-the-art methods, while being the simplest one in the sense of having the least number of parameters, and not requiring any modifications to the learning procedure or post-learning steps. Finally, we prove it can approximate any continuous monotone function on a compact subset of R^n.
On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability
Recent advancements in Large Language Models (LLMs) have showcased their ability to perform complex reasoning tasks, but their effectiveness in planning remains underexplored. In this study, we evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks, focusing on three key aspects: feasibility, optimality, and generalizability. Through empirical evaluations on constraint-heavy tasks (e.g., Barman, Tyreworld) and spatially complex environments (e.g., Termes, Floortile), we highlight o1-preview's strengths in self-evaluation and constraint-following, while also identifying bottlenecks in decision-making and memory management, particularly in tasks requiring robust spatial reasoning. Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints and managing state transitions in structured environments. However, the model often generates suboptimal solutions with redundant actions and struggles to generalize effectively in spatially complex tasks. This pilot study provides foundational insights into the planning limitations of LLMs, offering key directions for future research on improving memory management, decision-making, and generalization in LLM-based planning. Code available at https://github.com/VITA-Group/o1-planning.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
