new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 13

Lifecycle-Aware code generation: Leveraging Software Engineering Phases in LLMs

Recent progress in large language models (LLMs) has advanced automatic code generation, yet most approaches rely on direct, single-step translation from problem descriptions to code, disregarding structured software engineering practices. We introduce a lifecycle-aware framework that systematically incorporates intermediate artifacts such as requirements analysis, state machine modeling, and pseudocode into both the training and inference stages. This design aligns code generation with standard software development phases and enables more structured reasoning. Experiments show that lifecycle-level fine-tuning improves code correctness by up to 75% over the same model before fine-tuning, with performance gains compounding across intermediate stages. Multi-step inference consistently surpasses single-step generation, demonstrating the effectiveness of intermediate scaffolding. Notably, open-source LLMs, once fine-tuned under our framework, match or slightly outperform models pretrained on code. When applied to DeepSeek-Coder-1.3B, our framework yields relative CodeBLEU improvements of 34.3%, 20.0%, 11.2%, and 22.3% over ChatGPT-3.5, ChatGPT-4o-mini, DeepSeek-R1, and LLaMA-8B, respectively. Our pipeline also proves robust with up to 80\% less training data, confirming its resilience. Ablation studies further reveal that each intermediate artifact contributes distinctly to final code quality, with state machine modeling yielding the most substantial impact. Our source code and detailed experimental data are available at https://anonymous.4open.science/r/Lifecycle-Aware-3CCB.

  • 5 authors
·
Oct 27, 2025

NTIRE 2025 XGC Quality Assessment Challenge: Methods and Results

This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.

  • 95 authors
·
Jun 3, 2025

Generating a Low-code Complete Workflow via Task Decomposition and RAG

AI technologies are moving rapidly from research to production. With the popularity of Foundation Models (FMs) that generate text, images, and video, AI-based systems are increasing their complexity. Compared to traditional AI-based software, systems employing FMs, or GenAI-based systems, are more difficult to design due to their scale and versatility. This makes it necessary to document best practices, known as design patterns in software engineering, that can be used across GenAI applications. Our first contribution is to formalize two techniques, Task Decomposition and Retrieval-Augmented Generation (RAG), as design patterns for GenAI-based systems. We discuss their trade-offs in terms of software quality attributes and comment on alternative approaches. We recommend to AI practitioners to consider these techniques not only from a scientific perspective but also from the standpoint of desired engineering properties such as flexibility, maintainability, safety, and security. As a second contribution, we describe our industry experience applying Task Decomposition and RAG to build a complex real-world GenAI application for enterprise users: Workflow Generation. The task of generating workflows entails generating a specific plan using data from the system environment, taking as input a user requirement. As these two patterns affect the entire AI development cycle, we explain how they impacted the dataset creation, model training, model evaluation, and deployment phases.

ServiceNow-AI ServiceNow-AI
·
Nov 29, 2024 2

Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery

Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.

  • 6 authors
·
Jun 3, 2024

PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation

Despite notable advancements in Retrieval-Augmented Generation (RAG) systems that expand large language model (LLM) capabilities through external retrieval, these systems often struggle to meet the complex and diverse needs of real-world industrial applications. The reliance on retrieval alone proves insufficient for extracting deep, domain-specific knowledge performing in logical reasoning from specialized corpora. To address this, we introduce sPecIalized KnowledgE and Rationale Augmentation Generation (PIKE-RAG), focusing on extracting, understanding, and applying specialized knowledge, while constructing coherent rationale to incrementally steer LLMs toward accurate responses. Recognizing the diverse challenges of industrial tasks, we introduce a new paradigm that classifies tasks based on their complexity in knowledge extraction and application, allowing for a systematic evaluation of RAG systems' problem-solving capabilities. This strategic approach offers a roadmap for the phased development and enhancement of RAG systems, tailored to meet the evolving demands of industrial applications. Furthermore, we propose knowledge atomizing and knowledge-aware task decomposition to effectively extract multifaceted knowledge from the data chunks and iteratively construct the rationale based on original query and the accumulated knowledge, respectively, showcasing exceptional performance across various benchmarks.

  • 5 authors
·
Jan 20, 2025

Reliable and Efficient Amortized Model-based Evaluation

Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.

  • 5 authors
·
Mar 17, 2025

SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks

Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.

  • 10 authors
·
Dec 20, 2022

AgentMesh: A Cooperative Multi-Agent Generative AI Framework for Software Development Automation

Software development is a complex, multi-phase process traditionally requiring collaboration among individuals with diverse expertise. We propose AgentMesh, a Python-based framework that uses multiple cooperating LLM-powered agents to automate software development tasks. In AgentMesh, specialized agents - a Planner, Coder, Debugger, and Reviewer - work in concert to transform a high-level requirement into fully realized code. The Planner agent first decomposes user requests into concrete subtasks; the Coder agent implements each subtask in code; the Debugger agent tests and fixes the code; and the Reviewer agent validates the final output for correctness and quality. We describe the architecture and design of these agents and their communication, and provide implementation details including prompt strategies and workflow orchestration. A case study illustrates AgentMesh handling a non-trivial development request via sequential task planning, code generation, iterative debugging, and final code review. We discuss how dividing responsibilities among cooperative agents leverages the strengths of large language models while mitigating single-agent limitations. Finally, we examine current limitations - such as error propagation and context scaling - and outline future work toward more robust, scalable multi-agent AI systems for software engineering automation.

  • 1 authors
·
Jul 26, 2025

Experimenting with Multi-Agent Software Development: Towards a Unified Platform

Large language models are redefining software engineering by implementing AI-powered techniques throughout the whole software development process, including requirement gathering, software architecture, code generation, testing, and deployment. However, it is still difficult to develop a cohesive platform that consistently produces the best outcomes across all stages. The objective of this study is to develop a unified platform that utilizes multiple artificial intelligence agents to automate the process of transforming user requirements into well-organized deliverables. These deliverables include user stories, prioritization, and UML sequence diagrams, along with the modular approach to APIs, unit tests, and end-to-end tests. Additionally, the platform will organize tasks, perform security and compliance, and suggest design patterns and improvements for non-functional requirements. We allow users to control and manage each phase according to their preferences. In addition, the platform provides security and compliance checks following European standards and proposes design optimizations. We use multiple models, such as GPT-3.5, GPT-4, and Llama3 to enable to generation of modular code as per user choice. The research also highlights the limitations and future research discussions to overall improve the software development life cycle. The source code for our uniform platform is hosted on GitHub, enabling additional experimentation and supporting both research and practical uses. \end

  • 6 authors
·
Jun 8, 2024

A Model Zoo on Phase Transitions in Neural Networks

Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.

  • 6 authors
·
Apr 25, 2025 2

Development of different methods and their efficiencies for the estimation of diffusion coefficients following the diffusion couple technique

The interdiffusion coefficients are estimated either following the Wagner's method expressed with respect to the composition (mol or atomic fraction) normalized variable after considering the molar volume variation or the den Broeder's method expressed with respect to the concentration (composition divided by the molar volume) normalized variable. On the other hand, the relations for estimation of the intrinsic diffusion coefficients of components as established by van Loo and integrated diffusion coefficients in a phase with narrow homogeneity range as established by Wagner are currently available with respect to the composition normalized variable only. In this study, we have first derived the relation proposed by den Broeder following the line of treatment proposed by Wagner. Further, the relations for estimation of the intrinsic diffusion coefficients of the components and integrated interdiffusion coefficient are established with respect to the concentration normalized variable, which were not available earlier. The veracity of these methods is examined based on the estimation of data in Ni-Pd, Ni-Al and Cu-Sn systems. Our analysis indicates that both the approaches are logically correct and there is small difference in the estimated data in these systems although a higher difference could be found in other systems. The integrated interdiffusion coefficients with respect to the concentration (or concentration normalized variable) can only be estimated considering the ideal molar volume variation. This might be drawback in certain practical systems.

  • 2 authors
·
Jul 23, 2018

Multi-Agent Software Development through Cross-Team Collaboration

The latest breakthroughs in Large Language Models (LLMs), eg., ChatDev, have catalyzed profound transformations, particularly through multi-agent collaboration for software development. LLM agents can collaborate in teams like humans, and follow the waterfall model to sequentially work on requirements analysis, development, review, testing, and other phases to perform autonomous software generation. However, for an agent team, each phase in a single development process yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently, this may lead to obtaining suboptimal results. To address this challenge, we introduce Cross-Team Collaboration (CTC), a scalable multi-team framework that enables orchestrated teams to jointly propose various decisions and communicate with their insights in a cross-team collaboration environment for superior content generation. Experimental results in software development reveal a notable increase in quality compared to state-of-the-art baselines, underscoring the efficacy of our framework. The significant improvements in story generation demonstrate the promising generalization ability of our framework across various domains. We anticipate that our work will guide LLM agents towards a cross-team paradigm and contribute to their significant growth in but not limited to software development. The code and data will be available at https://github.com/OpenBMB/ChatDev.

  • 8 authors
·
Jun 13, 2024

Pre-perihelion Development of Interstellar Comet 3I/ATLAS

We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.

  • 2 authors
·
Oct 21, 2025

Communicative Agents for Software Development

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

  • 8 authors
·
Jul 15, 2023 1

LLM-EDT: Large Language Model Enhanced Cross-domain Sequential Recommendation with Dual-phase Training

Cross-domain Sequential Recommendation (CDSR) has been proposed to enrich user-item interactions by incorporating information from various domains. Despite current progress, the imbalance issue and transition issue hinder further development of CDSR. The former one presents a phenomenon that the interactions in one domain dominate the entire behavior, leading to difficulty in capturing the domain-specific features in the other domain. The latter points to the difficulty in capturing users' cross-domain preferences within the mixed interaction sequence, resulting in poor next-item prediction performance for specific domains. With world knowledge and powerful reasoning ability, Large Language Models (LLMs) partially alleviate the above issues by performing as a generator and an encoder. However, current LLMs-enhanced CDSR methods are still under exploration, which fail to recognize the irrelevant noise and rough profiling problems. Thus, to make peace with the aforementioned challenges, we proposed an LLMs Enhanced Cross-domain Sequential Recommendation with Dual-phase Training ({LLM-EDT}). To address the imbalance issue while introducing less irrelevant noise, we first propose the transferable item augmenter to adaptively generate possible cross-domain behaviors for users. Then, to alleviate the transition issue, we introduce a dual-phase training strategy to empower the domain-specific thread with a domain-shared background. As for the rough profiling problem, we devise a domain-aware profiling module to summarize the user's preference in each domain and adaptively aggregate them to generate comprehensive user profiles. The experiments on three public datasets validate the effectiveness of our proposed LLM-EDT. To ease reproducibility, we have released the detailed code online at {https://anonymous.4open.science/r/LLM-EDT-583F}.

  • 9 authors
·
Nov 25, 2025

Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing

One of the critical phases in software development is software testing. Testing helps with identifying potential bugs and reducing maintenance costs. The goal of automated test generation tools is to ease the development of tests by suggesting efficient bug-revealing tests. Recently, researchers have leveraged Large Language Models (LLMs) of code to generate unit tests. While the code coverage of generated tests was usually assessed, the literature has acknowledged that the coverage is weakly correlated with the efficiency of tests in bug detection. To improve over this limitation, in this paper, we introduce MuTAP for improving the effectiveness of test cases generated by LLMs in terms of revealing bugs by leveraging mutation testing. Our goal is achieved by augmenting prompts with surviving mutants, as those mutants highlight the limitations of test cases in detecting bugs. MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs). We employ different LLMs within MuTAP and evaluate their performance on different benchmarks. Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets. Among these, 17% remained undetected by both the current state-of-the-art fully automated test generation tool (i.e., Pynguin) and zero-shot/few-shot learning approaches on LLMs. Furthermore, MuTAP achieves a Mutation Score (MS) of 93.57% on synthetic buggy code, outperforming all other approaches in our evaluation. Our findings suggest that although LLMs can serve as a useful tool to generate test cases, they require specific post-processing steps to enhance the effectiveness of the generated test cases which may suffer from syntactic or functional errors and may be ineffective in detecting certain types of bugs and testing corner cases PUTs.

  • 5 authors
·
Aug 31, 2023

Agentless: Demystifying LLM-based Software Engineering Agents

Recent advancements in large language models (LLMs) have significantly advanced the automation of software development tasks, including code synthesis, program repair, and test generation. More recently, researchers and industry practitioners have developed various autonomous LLM agents to perform end-to-end software development tasks. These agents are equipped with the ability to use tools, run commands, observe feedback from the environment, and plan for future actions. However, the complexity of these agent-based approaches, together with the limited abilities of current LLMs, raises the following question: Do we really have to employ complex autonomous software agents? To attempt to answer this question, we build Agentless -- an agentless approach to automatically solve software development problems. Compared to the verbose and complex setup of agent-based approaches, Agentless employs a simplistic two-phase process of localization followed by repair, without letting the LLM decide future actions or operate with complex tools. Our results on the popular SWE-bench Lite benchmark show that surprisingly the simplistic Agentless is able to achieve both the highest performance (27.33%) and lowest cost (\$0.34) compared with all existing open-source software agents! Furthermore, we manually classified the problems in SWE-bench Lite and found problems with exact ground truth patch or insufficient/misleading issue descriptions. As such, we construct SWE-bench Lite-S by excluding such problematic issues to perform more rigorous evaluation and comparison. Our work highlights the current overlooked potential of a simple, interpretable technique in autonomous software development. We hope Agentless will help reset the baseline, starting point, and horizon for autonomous software agents, and inspire future work along this crucial direction.

  • 4 authors
·
Jul 1, 2024 7

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs

We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.

  • 89 authors
·
Feb 3, 2019

Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning

Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in N independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be {it misaligned} with pass@N in that pass@N accuracy {it decreases} with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.

  • 5 authors
·
Feb 10, 2025

A Temporal Convolutional Network-Based Approach and a Benchmark Dataset for Colonoscopy Video Temporal Segmentation

Following recent advancements in computer-aided detection and diagnosis systems for colonoscopy, the automated reporting of colonoscopy procedures is set to further revolutionize clinical practice. A crucial yet underexplored aspect in the development of these systems is the creation of computer vision models capable of autonomously segmenting full-procedure colonoscopy videos into anatomical sections and procedural phases. In this work, we aim to create the first open-access dataset for this task and propose a state-of-the-art approach, benchmarked against competitive models. We annotated the publicly available REAL-Colon dataset, consisting of 2.7 million frames from 60 complete colonoscopy videos, with frame-level labels for anatomical locations and colonoscopy phases across nine categories. We then present ColonTCN, a learning-based architecture that employs custom temporal convolutional blocks designed to efficiently capture long temporal dependencies for the temporal segmentation of colonoscopy videos. We also propose a dual k-fold cross-validation evaluation protocol for this benchmark, which includes model assessment on unseen, multi-center data.ColonTCN achieves state-of-the-art performance in classification accuracy while maintaining a low parameter count when evaluated using the two proposed k-fold cross-validation settings, outperforming competitive models. We report ablation studies to provide insights into the challenges of this task and highlight the benefits of the custom temporal convolutional blocks, which enhance learning and improve model efficiency. We believe that the proposed open-access benchmark and the ColonTCN approach represent a significant advancement in the temporal segmentation of colonoscopy procedures, fostering further open-access research to address this clinical need.

  • 4 authors
·
Feb 5, 2025

\texttt{simple-idealized-1d-nlse}: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation

We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves.

  • 5 authors
·
Sep 6, 2025

Challenges and Opportunities of Using Transformer-Based Multi-Task Learning in NLP Through ML Lifecycle: A Survey

The increasing adoption of natural language processing (NLP) models across industries has led to practitioners' need for machine learning systems to handle these models efficiently, from training to serving them in production. However, training, deploying, and updating multiple models can be complex, costly, and time-consuming, mainly when using transformer-based pre-trained language models. Multi-Task Learning (MTL) has emerged as a promising approach to improve efficiency and performance through joint training, rather than training separate models. Motivated by this, we first provide an overview of transformer-based MTL approaches in NLP. Then, we discuss the challenges and opportunities of using MTL approaches throughout typical ML lifecycle phases, specifically focusing on the challenges related to data engineering, model development, deployment, and monitoring phases. This survey focuses on transformer-based MTL architectures and, to the best of our knowledge, is novel in that it systematically analyses how transformer-based MTL in NLP fits into ML lifecycle phases. Furthermore, we motivate research on the connection between MTL and continual learning (CL), as this area remains unexplored. We believe it would be practical to have a model that can handle both MTL and CL, as this would make it easier to periodically re-train the model, update it due to distribution shifts, and add new capabilities to meet real-world requirements.

  • 6 authors
·
Aug 16, 2023