- Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies Kerr nonlinear oscillators driven by a two-photon process are promising systems to encode quantum information and to ensure a hardware-efficient scaling towards fault-tolerant quantum computation. In this paper, we show that an extra control parameter, the detuning of the two-photon drive with respect to the oscillator resonance, plays a crucial role in the properties of the defined qubit. At specific values of this detuning, we benefit from strong symmetries in the system, leading to multiple degeneracies in the spectrum of the effective confinement Hamiltonian. Overall, these degeneracies lead to a stronger suppression of bit-flip errors. We also study the combination of such Hamiltonian confinement with colored dissipation to suppress leakage outside of the bosonic code space. We show that the additional degeneracies allow us to perform fast and high-fidelity gates while preserving a strong suppression of bit-flip errors. 4 authors · Nov 7, 2022
- Solitons near avoided mode crossing in χ^{(2)} nanowaveguides We present a model for chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties. 3 authors · Aug 19, 2021
- simple-idealized-1d-nlse: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves. 5 authors · Sep 6, 2025
- Combined Dissipative and Hamiltonian Confinement of Cat Qubits Quantum error correction with biased-noise qubits can drastically reduce the hardware overhead for universal and fault-tolerant quantum computation. Cat qubits are a promising realization of biased-noise qubits as they feature an exponential error bias inherited from their non-local encoding in the phase space of a quantum harmonic oscillator. To confine the state of an oscillator to the cat qubit manifold, two main approaches have been considered so far: a Kerr-based Hamiltonian confinement with high gate performances, and a dissipative confinement with robust protection against a broad range of noise mechanisms. We introduce a new combined dissipative and Hamiltonian confinement scheme based on two-photon dissipation together with a Two-Photon Exchange (TPE) Hamiltonian. The TPE Hamiltonian is similar to Kerr nonlinearity, but unlike the Kerr it only induces a bounded distinction between even- and odd-photon eigenstates, a highly beneficial feature for protecting the cat qubits with dissipative mechanisms. Using this combined confinement scheme, we demonstrate fast and bias-preserving gates with drastically improved performance compared to dissipative or Hamiltonian schemes. In addition, this combined scheme can be implemented experimentally with only minor modifications of existing dissipative cat qubit experiments. 3 authors · Dec 10, 2021
- Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator Nonlinear quantum photonics serves as a cornerstone in photonic quantum technologies, such as universal quantum computing and quantum communications. The emergence of integrated photonics platform not only offers the advantage of large-scale manufacturing but also provides a variety of engineering methods. Given the complexity of integrated photonics engineering, a comprehensive simulation framework is essential to fully harness the potential of the platform. In this context, we introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors. Furthermore, utilizing the framework, we have developed a device scheme, chip-scale temporal walk-off compensation, that is useful for various quantum information processing tasks. Applying the simulation framework, we show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power. 6 authors · Feb 29, 2024
- Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation In this work, we study the black hole light echoes in terms of the two-photon autocorrelation and explore their connection with the quasinormal modes. It is shown that the above time-domain phenomenon can be analyzed by utilizing the well-known frequency-domain relations between the quasinormal modes and characteristic parameters of null geodesics. We found that the time-domain correlator, obtained by the inverse Fourier transform, naturally acquires the echo feature, which can be attributed to a collective effect of the asymptotic poles through a weighted summation of the squared modulus of the relevant Green's functions. Specifically, the contour integral leads to a summation taking over both the overtone index and angular momentum. Moreover, the dominant contributions to the light echoes are from those in the eikonal limit, consistent with the existing findings using the geometric-optics arguments. For the Schwarzschild black holes, we demonstrate the results numerically by considering a transient spherical light source. Also, for the Kerr spacetimes, we point out a potential difference between the resulting light echoes using the geometric-optics approach and those obtained by the black hole perturbation theory. Possible astrophysical implications of the present study are addressed. 5 authors · Sep 6, 2021
- On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter. 4 authors · May 9, 2024
- Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain. 4 authors · Aug 1, 2023
- Dynamical properties of a small heterogeneous chain network of neurons in discrete time We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy. 4 authors · May 9, 2024
- A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (DANSur) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around 10^{-4}. Implemented in the bilby framework, we show they can be used for parameter estimation tasks. 9 authors · Dec 9, 2024
- Driving Enhanced Exciton Transfer by Automatic Differentiation We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective. 6 authors · Nov 26, 2024
- Efficient parametric frequency conversions in lithium niobate nanophotonic chips Chip-integrated nonlinear photonics holds the key for advanced optical information processing with superior performance and novel functionalities. Here, we present an optimally mode-matched, periodically poled lithium niobate nanowaveguide for efficient parametric frequency conversions on chip. Using a 4-mm nanowaveguide with subwavelength mode confinement, we demonstrate second harmonic generation with efficiency over 2200%~W^{-1}cm^{-2}, and broadband difference frequency generation with similar efficiency over a 4.5-THz spectral span. These allow us to generate correlated photon pairs over multiple frequency channels via spontaneous parametric down conversion, all in their fundamental spatial modes, with a coincidence to accidental ratio as high as 600. The high efficiency and dense integrability of the present chip devices may pave a viable route to scalable nonlinear applications in both classical and quantum domains. 6 authors · Mar 20, 2019
- Instability of the solitary waves for the Generalized Benjamin-Bona-Mahony Equation In this work, we consider the generalized Benjamin-Bona-Mahony equation $partial_t u+partial_x u+partial_x( |u|^pu)-partial_t partial_x^{2}u=0, quad(t,x) in R times R, with p>4. This equation has the traveling wave solutions \phi_{c}(x-ct), for any frequency c>1. It has been proved by Souganidis and Strauss Strauss-1990 that, there exists a number c_{0}(p)>1, such that solitary waves \phi_{c}(x-ct) with 1<c<c_{0}(p) is orbitally unstable, while for c>c_{0}(p), \phi_{c}(x-ct) is orbitally stable. The linear exponential instability in the former case was further proved by Pego and Weinstein Pego-1991-eigenvalue. In this paper, we prove the orbital instability in the critical case c=c_{0}(p)$. 2 authors · Sep 1, 2023
- A neural network for forward and inverse nonlinear Fourier transforms for fiber optic communication We propose a neural network for both forward and inverse continuous nonlinear Fourier transforms, NFT and INFT respectively. We demonstrate the network's capability to perform NFT and INFT for a random mix of NFDM-QAM signals. The network transformations (NFT and INFT) exhibit true characteristics of these transformations; they are significantly different for low and high-power input pulses. The network shows adequate accuracy with an RMSE of 5e-3 for forward and 3e-2 for inverse transforms. We further show that the trained network can be used to perform general nonlinear Fourier transforms on arbitrary pulses beyond the training pulse types. 3 authors · Jul 14, 2024
1 Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing Artificial neural networks have become a staple computing technique in many fields. Yet, they present fundamental differences with classical computing hardware in the way they process information. Photonic implementations of neural network architectures potentially offer fundamental advantages over their electronic counterparts in terms of speed, processing parallelism, scalability and energy efficiency. Scalable and high performance photonic neural networks (PNNs) have been demonstrated, yet they remain scarce. In this work, we study the performance of such a scalable, fully parallel and autonomous PNN based on a large area vertical-cavity surface-emitting laser (LA-VCSEL). We show how the performance varies with different physical parameters, namely, injection wavelength, injection power, and bias current. Furthermore, we link these physical parameters to the general computational measures of consistency and dimensionality. We present a general method of gauging dimensionality in high dimensional nonlinear systems subject to noise, which could be applied to many systems in the context of neuromorphic computing. Our work will inform future implementations of spatially multiplexed VCSEL PNNs. 6 authors · Dec 16, 2021
1 Model-agnostic search for the quasinormal modes of gravitational wave echoes Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology". 4 authors · Aug 2, 2023
- Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction Quantum reservoir computing is strongly emerging for sequential and time series data prediction in quantum machine learning. We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals that are efficiently learned with a single linear output layer. We address the need for quantum reservoir tuning with a novel and generally applicable approach to quantum circuit parameterization, in which tunable noise models are programmed to the quantum reservoir circuit to be fully controlled for effective optimization. Our systematic approach also involves reductions in quantum reservoir circuits in the number of qubits and entanglement scheme complexity. We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks that include the Mackey-Glass system for 100 steps ahead in the challenging chaotic regime. 5 authors · Mar 9, 2023
- Finding extremal periodic orbits with polynomial optimisation, with application to a nine-mode model of shear flow Tobasco et al. [Physics Letters A, 382:382-386, 2018; see https://doi.org/10.1016/j.physleta.2017.12.023] recently suggested that trajectories of ODE systems that optimize the infinite-time average of a certain observable can be localized using sublevel sets of a function that arise when bounding such averages using so-called auxiliary functions. In this paper we demonstrate that this idea is viable and allows for the computation of extremal unstable periodic orbits (UPOs) for polynomial ODE systems. First, we prove that polynomial optimization is guaranteed to produce auxiliary functions that yield near-sharp bounds on time averages, which is required in order to localize the extremal orbit accurately. Second, we show that points inside the relevant sublevel sets can be computed efficiently through direct nonlinear optimization. Such points provide good initial conditions for UPO computations. As a proof of concept, we then combine these methods with a single-shooting Newton-Raphson algorithm to study extremal UPOs for a nine-dimensional model of sinusoidally forced shear flow. We discover three previously unknown families of UPOs, one of which simultaneously minimizes the mean energy dissipation rate and maximizes the mean perturbation energy relative to the laminar state for Reynolds numbers approximately between 81.24 and 125. 5 authors · Jun 10, 2019
- Investigation of intrinsic properties of high-quality fiber Fabry--Perot resonators Fiber Fabry--Perot (FFP) resonators of a few centimeters are optimized as a function of the reflectivity of the mirrors and the dimensions of the intra-cavity waveguide. Loaded quality factor in excess of 10^9, with an optimum of 4___x___10^9, together with an intrinsic quality factor larger than 10^10 and intrinsic finesse in the range of 10^5 have been measured. An application to the stabilization of laser frequency fluctuations is presented. 11 authors · Oct 16, 2025
- Learning Null Geodesics for Gravitational Lensing Rendering in General Relativity We present GravLensX, an innovative method for rendering black holes with gravitational lensing effects using neural networks. The methodology involves training neural networks to fit the spacetime around black holes and then employing these trained models to generate the path of light rays affected by gravitational lensing. This enables efficient and scalable simulations of black holes with optically thin accretion disks, significantly decreasing the time required for rendering compared to traditional methods. We validate our approach through extensive rendering of multiple black hole systems with superposed Kerr metric, demonstrating its capability to produce accurate visualizations with significantly 15times reduced computational time. Our findings suggest that neural networks offer a promising alternative for rendering complex astrophysical phenomena, potentially paving a new path to astronomical visualization. 6 authors · Jul 21, 2025
- Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and recombination instead of beam splitters. We show that the sensitivity of estimation phase approaches Heisenberg limit and give the corresponding optimal condition. Moreover, we derive the quantum Cram\'er-Rao bound of the SU(1,1) interferometer. 7 authors · Mar 29, 2016
- Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator A cylindrical TM_{0,1,0} mode microwave cavity resonator was excited using a balanced interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude of the interferometer arms driving the resonator. With precise tuning of the phase and amplitude, 25 dB suppression of the electric field at the resonance frequency was achieved while simultaneously resonantly enhancing the time-varying electric-scalar potential. Under these conditions, the system demonstrated electromagnetically induced absorption in the cavity response due to the annulment of the electric field at the resonance frequency. This phenomena can be regarded as a form of extreme dispersion, and led to a sharp increase in the cavity phase versus frequency response by an order of magnitude when compared to the cavity Q-factor. This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested under conditions involving a time-varying electric-scalar potential, without the presence of an electric field or magnetic vector potential, an experiment that has not yet been realised. 5 authors · Oct 2, 2024
- Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time. 4 authors · Apr 10, 2024
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- Respecting causality is all you need for training physics-informed neural networks While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity. 3 authors · Mar 14, 2022
- Local linearization for estimating the diffusion parameter of nonlinear stochastic wave equations with spatially correlated noise We study the bi-parameter local linearization of the one-dimensional nonlinear stochastic wave equation driven by a Gaussian noise, which is white in time and has a spatially homogeneous covariance structure of Riesz-kernel type. We establish that the second-order increments of the solution can be approximated by those of the corresponding linearized wave equation, modulated by the diffusion coefficient. These findings extend the previous results of Huang et al. HOO2024, which addressed the case of space-time white noise. As applications, we analyze the quadratic variation of the solution and construct a consistent estimator for the diffusion parameter. 2 authors · Oct 1, 2025
- Dynamical Cosmological Constant The dynamical realisation of the equation of state p +rho =0 is studied. A non-pathological dynamics for the perturbations of such a system mimicking a dynamical cosmological constant (DCC) requires to go beyond the perfect fluid paradigm. It is shown that an anisotropic stress must be always present. The Hamiltonian of the system in isolation resembles the one of a Pais-Uhlenbeck oscillator and linear stability requires that it cannot be positive definite. The dynamics of linear cosmological perturbations in a DCC dominated Universe is studied in detail showing that when DCC is minimally coupled to gravity no dramatic instability is present. In contrast to what happens in a cosmological constant dominated Universe, the non-relativistic matter contrast is no longer constant and exhibits an oscillator behaviour at small scales while it grows weakly at large scales. In the gravitational waves sector, at small scales, the amplitude is still suppressed as the inverse power of the scale factor while it grows logarithmically at large scales. Also the vector modes propagate, though no growing mode is found. 2 authors · Mar 5, 2025
- An operator preconditioning perspective on training in physics-informed machine learning In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training. 4 authors · Oct 9, 2023
- Nonlinear Deterministic Filter for Inertial Navigation and Bias Estimation with Guaranteed Performance Unmanned vehicle navigation concerns estimating attitude, position, and linear velocity of the vehicle the six degrees of freedom (6 DoF). It has been known that the true navigation dynamics are highly nonlinear modeled on the Lie Group of SE_{2}(3). In this paper, a nonlinear filter for inertial navigation is proposed. The filter ensures systematic convergence of the error components starting from almost any initial condition. Also, the errors converge asymptotically to the origin. Experimental results validates the robustness of the proposed filter. 3 authors · Sep 17, 2021
- Artificial Transmission Line Synthesis Tailored for Traveling-Wave Parametric Processes Artificial transmission lines built with lumped-element inductors and capacitors form the backbone of broadband, nearly quantum-limited traveling-wave parametric amplifiers (TWPAs). However, systematic design methods for TWPAs, and more generally artificial transmission lines, are lacking. Here, I develop a general synthesis framework for lossless artificial transmission lines by borrowing from periodic structure theory and passive network synthesis. These complementary approaches divide the design space: periodic loading synthesis employs spatial modulation of frequency-independent components, while filter synthesis employs frequency-dependent responses in spatially-uniform components. When tailoring transmission lines for parametric processes, nonlinear elements are added, typically nonlinear inductances in superconducting circuits, while ensuring energy and momentum conservation between interacting tones. Applying this framework, I design a kinetic inductance TWPA with a novel phase-matching architecture, and a backward-pumped Josephson TWPA exploiting an ambidextrous i.e., right-left-handed transmission line. 1 authors · Oct 17, 2025
- KETJU -- resolving small-scale supermassive black hole dynamics in GADGET-4 We present the new public version of the KETJU supermassive black hole (SMBH) dynamics module, as implemented into GADGET-4. KETJU adds a small region around each SMBH where the dynamics of the SMBHs and stellar particles are integrated using an algorithmically regularised integrator instead of the leapfrog integrator with gravitational softening used by GADGET-4. This enables modelling SMBHs as point particles even during close interactions with stellar particles or other SMBHs, effectively removing the spatial resolution limitation caused by gravitational softening. KETJU also includes post-Newtonian corrections, which allows following the dynamics of SMBH binaries to sub-parsec scales and down to tens of Schwarzschild radii. Systems with multiple SMBHs are also supported, with the code also including the leading non-linear cross terms that appear in the post-Newtonian equations for such systems. We present tests of the code showing that it correctly captures, at sufficient mass resolution, the sinking driven by dynamical friction and binary hardening driven by stellar scattering. We also present an example application demonstrating how the code can be applied to study the dynamics of SMBHs in mergers of multiple galaxies and the effect they have on the properties of the surrounding galaxy. We expect that the presented KETJU SMBH dynamics module can also be straightforwardly incorporated into other codes similar to GADGET-4, which would allow coupling small-scale SMBH dynamics to the rich variety of galactic physics models that exist in the literature. 8 authors · Jun 8, 2023
- Linearly-Recurrent Autoencoder Networks for Learning Dynamics This paper describes a method for learning low-dimensional approximations of nonlinear dynamical systems, based on neural-network approximations of the underlying Koopman operator. Extended Dynamic Mode Decomposition (EDMD) provides a useful data-driven approximation of the Koopman operator for analyzing dynamical systems. This paper addresses a fundamental problem associated with EDMD: a trade-off between representational capacity of the dictionary and over-fitting due to insufficient data. A new neural network architecture combining an autoencoder with linear recurrent dynamics in the encoded state is used to learn a low-dimensional and highly informative Koopman-invariant subspace of observables. A method is also presented for balanced model reduction of over-specified EDMD systems in feature space. Nonlinear reconstruction using partially linear multi-kernel regression aims to improve reconstruction accuracy from the low-dimensional state when the data has complex but intrinsically low-dimensional structure. The techniques demonstrate the ability to identify Koopman eigenfunctions of the unforced Duffing equation, create accurate low-dimensional models of an unstable cylinder wake flow, and make short-time predictions of the chaotic Kuramoto-Sivashinsky equation. 2 authors · Dec 4, 2017
- Radiating Love: adiabatic tidal fluxes and modes up to next-to-next-to-leading post-Newtonian order We present the analytic evaluation of the gravitational energy and of the angular momentum flux with tidal effects for inspiraling compact binaries, at next-to-next-to-leading post-Newtoian (2PN) order, within the effective field theory diagrammatic approach. We first compute the stress-energy tensor for a binary system, that requires the evaluation of two-point Feynman integrals, up to two loops. Then, we extract the multipole moments of the system, which we present for generic orbits in center-of-mass coordinates, and which are needed for the evaluation of the total gravitational energy and the angular momentum flux, for generic orbits. Finally, we provide the expression of gauge invariant quantities such as the fluxes, and the mode amplitudes and phase of the emitted gravitational wave, for circular orbits. Our findings are useful to update earlier theoretical studies as well as related phenomenological analyses, and waveform models 4 authors · Dec 2, 2024
- Exterior field of neutron stars: The singularity structure of vacuum and electrovac solutions In the present paper we study the singularity structure of the exterior field of neutron stars with the aid of the four-parameter exact solution of the Einstein-Maxwell equations. The complete analysis of this problem in the generic case becomes possible due to the implementation of the novel analytical approach to the resolution of the singularity condition, and it shows the absence of the ring singularities off the symmetry axis in the positive mass case, as well as the possibility of the removal of the ring singularity by a strong magnetic field in the negative mass case. The solution takes an extraordinarily simple form in the equatorial plane, very similar to that of the Kerr solution, which makes it most suitable for astrophysical applications as the simplest model of a rotating magnetized deformed mass. It also provides a nontrivial example confirming a recent claim that the varphi component of the electromagnetic four-potential has features inconsistent with the intrinsic properties of the electrovac metric, while the magnetic field is represented correctly by the t component of the dual electromagnetic four-potential. 4 authors · Mar 31, 2023
1 The Unconventional Photon Blockade We review the unconventional photon blockade mechanism. This quantum effect remarkably enables a strongly sub-Poissonian light statistics, even from a system characterized by a weak single photon nonlinearity. We revisit the past results, which can be interpreted in terms of quantum interferences or optimal squeezing, and show how recent developments on input-output field mixing can overcome the limitations of the original schemes towards passive and integrable single photon sources. We finally present some valuable alternative schemes for which the unconventional blockade can be directly adapted. 2 authors · Sep 19, 2017 1
- Solving physics-based initial value problems with unsupervised machine learning Initial value problems -- a system of ordinary differential equations and corresponding initial conditions -- can be used to describe many physical phenomena including those arise in classical mechanics. We have developed a novel approach to solve physics-based initial value problems using unsupervised machine learning. We propose a deep learning framework that models the dynamics of a variety of mechanical systems through neural networks. Our framework is flexible, allowing us to solve non-linear, coupled, and chaotic dynamical systems. We demonstrate the effectiveness of our approach on systems including a free particle, a particle in a gravitational field, a classical pendulum, and the H\'enon--Heiles system (a pair of coupled harmonic oscillators with a non-linear perturbation, used in celestial mechanics). Our results show that deep neural networks can successfully approximate solutions to these problems, producing trajectories which conserve physical properties such as energy and those with stationary action. We note that probabilistic activation functions, as defined in this paper, are required to learn any solutions of initial value problems in their strictest sense, and we introduce coupled neural networks to learn solutions of coupled systems. 3 authors · Jul 25, 2024
- Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions. 2 authors · May 21, 2023
- Schrödinger-Poisson systems with a general critical nonlinearity We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter. 3 authors · Jan 6, 2015
- The Virtual Quantum Optics Laboratory We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 5 authors · May 15, 2021
- Modeling Temperature, Frequency, and Strain Effects on the Linear Electro-Optic Coefficients of Ferroelectric Oxides An electro-optic modulator offers the function of modulating the propagation of light in a material with electric field and enables seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau-Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO3, LiNbO3, and LiTaO3. We present their temperature-, frequency- and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification. 5 authors · Jun 5, 2021
- Learning Control-Oriented Dynamical Structure from Data Even for known nonlinear dynamical systems, feedback controller synthesis is a difficult problem that often requires leveraging the particular structure of the dynamics to induce a stable closed-loop system. For general nonlinear models, including those fit to data, there may not be enough known structure to reliably synthesize a stabilizing feedback controller. In this paper, we discuss a state-dependent nonlinear tracking controller formulation based on a state-dependent Riccati equation for general nonlinear control-affine systems. This formulation depends on a nonlinear factorization of the system of vector fields defining the control-affine dynamics, which always exists under mild smoothness assumptions. We propose a method for learning this factorization from a finite set of data. On a variety of simulated nonlinear dynamical systems, we empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking. Alongside our learning method, we evaluate recent ideas in jointly learning a controller and stabilizability certificate for known dynamical systems; we show experimentally that such methods can be frail in comparison. 4 authors · Feb 5, 2023
- A Multi-Branched Radial Basis Network Approach to Predicting Complex Chaotic Behaviours In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities. 1 authors · Mar 31, 2024
- Ultra-sensitive solid-state organic molecular microwave quantum receiver High-accuracy microwave sensing is widely demanded in various fields, ranging from cosmology to microwave quantum technology. Quantum receivers based on inorganic solid-state spin systems are promising candidates for such purpose because of the stability and compatibility, but their best sensitivity is currently limited to a few pT/rm{Hz}. Here, by utilising an enhanced readout scheme with the state-of-the-art solid-state maser technology, we develop a robust microwave quantum receiver functioned by organic molecular spins at ambient conditions. Owing to the maser amplification, the sensitivity of the receiver achieves 6.14 pm 0.17 fT/rm{Hz} which exceeds three orders of magnitude than that of the inorganic solid-state quantum receivers. The heterodyne detection without additional local oscillators improves bandwidth of the receiver and allows frequency detection. The scheme can be extended to other solid-state spin systems without complicated control pulses and thus enables practical applications such as electron spin resonance spectroscopy, dark matter searches, and astronomical observations. 12 authors · May 23, 2024
- A Machine Learning Pipeline for Hunting Hidden Axion Signals in Pulsar Dispersion Measurements In the axion model, electromagnetic waves interacting with axions induce frequency-dependent time delays, determined by the axion mass and decay constant. These small delays are difficult to detect, making traditional methods ineffective. To address this, we computed time delays for various parameters and found a prominent dispersion signal when the wave frequency equals half the axion mass. Based on this, we developed a machine learning-based pipeline, achieving 95\% classification accuracy and demonstrating strong detection capability in low signal-to-noise data. Applying this to PSR J1933-6211, we found no axion-induced delays within current sensitivity limits. While existing constraints are limited by atomic clock resolution in radio telescopes, future advances in optical clocks and broader bandwidths will enable more extensive searches. In particular, combining high-precision optical clocks with next-generation radio telescopes, such as the Qitai Radio Telescope, could improve decay constant constraints by four orders of magnitude for axion masses in the 10^{-6} sim 10^{-4} eV range. 6 authors · May 22, 2025
- TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps. 5 authors · Apr 20, 2023
- Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases Nonlinear model order reduction has opened the door to parameter optimization and uncertainty quantification in complex physics problems governed by nonlinear equations. In particular, the computational cost of solving these equations can be reduced by means of local reduced-order bases. This article examines the benefits of a physics-informed cluster analysis for the construction of cluster-specific reduced-order bases. We illustrate that the choice of the dissimilarity measure for clustering is fundamental and highly affects the performances of the local reduced-order bases. It is shown that clustering with an angle-based dissimilarity on simulation data efficiently decreases the intra-cluster Kolmogorov N-width. Additionally, an a priori efficiency criterion is introduced to assess the relevance of a ROM-net, a methodology for the reduction of nonlinear physics problems introduced in our previous work in [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced Modeling and Simulation in Engineering Sciences 7 (16), 2020]. This criterion also provides engineers with a very practical method for ROM-nets' hyperparameters calibration under constrained computational costs for the training phase. On five different physics problems, our physics-informed clustering strategy significantly outperforms classic strategies for the construction of local reduced-order bases in terms of projection errors. 5 authors · Mar 25, 2021
- Pattern and Origin for the Extreme γ-ray Flares of 3C 454.3 and 3C 279: An Astrophysical Critical Damper? We apply a Gaussian process method to the extreme gamma-ray flares of 3C 454.3 and 3C 279 to discover the variable patterns and then to investigate the physical origins of the giant flares. The kernels of stochastically driven damped simple harmonic oscillator (SHO), the damped random-walk (DRW), and Matrm ern-3/2 are respectively used to describe the adaptive-binning gamma-ray light curves of the two flares. Our findings show that both the extreme gamma-ray flares of 3C 454.3 and 3C 279 clearly prefer the SHO kernel in the over-damped mode and the Matrm ern-3/2 kernel over the DRW kernel. The resulted SHO and Matrm ern-3/2 power spectral densities (PSDs) are the same for each object, with the index changing from -4 at high frequencies to 0 at low frequencies. The patterns of the two flares are both approaching the critical damping mode with the quality factor Q approx 0.4 (i.e., the damping ratio eta approx 1.25), but with slightly different damping timescales. The characteristic timescale (corresponding to the broken frequency in the PSD) for 3C 454.3 is 2-3 days and 3-5 days for 3C 279. The variable patterns found here suggest that once the system responds to the energy injection disturbance, the release of the energy in the system is finished abruptly. The obtained timescale provides a constraint on the size of energy dissipation region for each source. 5 authors · Feb 28, 2025
- Piecewise DMD for oscillatory and Turing spatio-temporal dynamics Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets describing oscillatory dynamics, like spiral waves and relaxation oscillations, or spatio-temporal Turing instability. Inspired from the classical "divide and conquer" approach, we propose a piecewise version of DMD (pDMD) to overcome this problem. The main idea is to split the original dataset in N submatrices and then apply the exact (randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail and we introduce some error indicators to evaluate its performance when N is increased. Numerical experiments show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of some reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, the lambda-omega system and the DIB morpho-chemical system for battery modeling. 3 authors · Mar 11, 2023
- Analytical sensitivity curves of the second-generation time-delay interferometry Forthcoming space-based gravitational-wave (GW) detectors will employ second-generation time-delay interferometry (TDI) to suppress laser frequency noise and achieve the sensitivity required for GW detection. We introduce an inverse light-path operator P_{i_{1}i_{2}i_{3}ldots i_{n-1}i_{n}}, which enables simple representation of second-generation TDI combinations and a concise description of light propagation. Analytical expressions and high-accuracy approximate formulas are derived for the sky- and polarization-averaged response functions, noise power spectral densities (PSDs), and sensitivity curves of TDI Michelson, (alpha,beta,gamma), Monitor, Beacon, Relay, and Sagnac combinations, as well as their orthogonal A, E, T channels. Our results show that: (i) second-generation TDIs have the same sensitivities as their first-generation counterparts; (ii) the A, E, T sensitivities and the optimal sensitivity are independent of the TDI generation and specific combination; (iii) the A and E channels have equal averaged responses, noise PSDs, and sensitivities, while the T channel has much weaker response and sensitivity at low frequencies (2pi fL/clesssim3); (iv) except for the (alpha,beta,gamma) and zeta combinations and the T channel, all sensitivity curves exhibit a flat section in the range f_{n}<flesssim 1.5/(2pi L/c), where the noise-balance frequency f_{n} separates the proof-mass- and optical-path-dominated regimes, while the response-transition frequency sim 1.5/(2pi L/c) separates the response function's low- and high-frequency behaviors; (v) the averaged response, noise PSD, and sensitivity of zeta scales with those of the T channel. These analytical and approximate formulations provide useful benchmarks for instrument optimization and data-analysis studies for future space-based GW detectors. 1 authors · Nov 3, 2025
- Spacetime Neural Network for High Dimensional Quantum Dynamics We develop a spacetime neural network method with second order optimization for solving quantum dynamics from the high dimensional Schr\"{o}dinger equation. In contrast to the standard iterative first order optimization and the time-dependent variational principle, our approach utilizes the implicit mid-point method and generates the solution for all spatial and temporal values simultaneously after optimization. We demonstrate the method in the Schr\"{o}dinger equation with a self-normalized autoregressive spacetime neural network construction. Future explorations for solving different high dimensional differential equations are discussed. 6 authors · Aug 4, 2021
- Path-Integral Approach to Quantum Acoustics A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations. 4 authors · May 1, 2025
- Energy-dependent temporal study of GX 13+1 with AstroSat observation In this work, we performed an energy-dependent study of low-frequency oscillations observed in GX 13+1 using AstroSat (Large Area X-ray Proportional Counter and Soft X-ray Telescope). The hardness-intensity diagram (HID) of the observation resembles a `nu'-shaped track, while the color-color diagram exhibits a `<'-shaped track, similar to the horizontal and normal branches of the Z source. We conducted flux-resolved temporal studies focusing on low-frequency variability and divided the HID into five regions: A, B, C, D, and E. Low-frequency quasi-periodic oscillations (QPOs) were detected in Regions A, B, and C. The QPO in Region A has a frequency of 5.06^{+0.54}_{-0.48} Hz with a quality factor (Q-factor) of 2.80. In Region B, the QPO was detected at 4.52^{+0.14}_{-0.13} Hz with a Q-factor of 5.79, while in Region C, it was observed at 4.70^{+0.62}_{-0.42} Hz with a Q-factor of 4.35. The QPO frequencies, Q-factors, and low root-mean-square (rms) values (1.32\%, 1.34\%, and 0.7\%) suggest that these oscillations are Normal Branch Oscillations, similar to those reported in GX 340+0. We modeled the rms and lag of the QPOs using a propagative model, considering variations in blackbody temperature, coronal heating rate, and optical depth. Our findings indicate that the observed QPOs are likely driven by interactions between the corona and variations in the blackbody temperature. 3 authors · Jul 1, 2025
- Single-shot Quantum Signal Processing Interferometry Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator's quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era. 4 authors · Nov 22, 2023
1 A New Class of Scaling Matrices for Scaled Trust Region Algorithms A new class of affine scaling matrices for the interior point Newton-type methods is considered to solve the nonlinear systems with simple bounds. We review the essential properties of a scaling matrix and consider several well-known scaling matrices proposed in the literature. We define a new scaling matrix that is the convex combination of these matrices. The proposed scaling matrix inherits those interesting properties of the individual matrices and satisfies additional desired requirements. The numerical experiments demonstrate the superiority of the new scaling matrix in solving several important test problems. 3 authors · Apr 19, 2019
- Gravitational waves in massive gravity: Waveforms generated by a particle plunging into a black hole and the excitation of quasinormal modes and quasibound states With the aim of testing massive gravity in the context of black hole physics, we investigate the gravitational radiation emitted by a massive particle plunging into a Schwarzschild black hole from slightly below the innermost stable circular orbit. To do so, we first construct the quasinormal and quasibound resonance spectra of the spin-2 massive field for odd and even parity. Then, we compute the waveforms produced by the plunging particle and study their spectral content. This allows us to highlight and interpret important phenomena in the plunge regime, including (i) the excitation of quasibound states, with particular emphasis on the amplification and slow decay of the post-ringdown phase of the even-parity dipolar mode due to harmonic resonance; (ii) during the adiabatic phase, the waveform emitted by the plunging particle is very well described by the waveform emitted by the particle living on the innermost stable circular orbit, and (iii) the regularized waveforms and their unregularized counterparts constructed from the quasinormal mode spectrum are in excellent agreement. Finally, we construct, for arbitrary directions of observation and, in particular, outside the orbital plane of the plunging particle, the regularized multipolar waveforms, i.e., the waveforms constructed by summing over partial waveforms. 1 authors · Nov 25, 2024
- Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and R\"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems. 4 authors · Oct 18, 2024
- Multiwavelength Variability Analysis of the Blazar PKS 0727-11: A sim168 Days Quasi-periodic Oscillation in Gamma-ray We performed variability analysis of the multiwavelength light curves for the flat-spectrum radio quasar PKS 0727-11. Using the generalized Lomb-Scargle periodogram, we identified a possible quasi-periodic oscillation (QPO) of sim 168.6 days (persisted for 6 cycles, with a significance of 3.8sigma) in the gamma-ray light curve during the flare period (MJD 54687-55738). It is the first time that periodic variations have been detected in this source, and further supported by other methods: weighted wavelet z-transform, phase dispersion minimization, REDFIT, autoregressive integrated moving average model, and structure function analysis. Cross-correlation analysis shows that there is a strong correlation between multi-band light variations, indicating that gamma-ray and radio flares may originate from the same disturbance, and the distance between the emission regions of gamma-ray and radio flares is calculated based on the time lag. We demonstrate that QPO arising from the non-ballistic helical jet motion driven by the orbital motion in a supermassive binary black hole is a plausible physical explanation. In this scenario, the estimated mass of the primary black hole is Msim3.66times10^8-5.79times10^{9}M_odot. 5 authors · Feb 22, 2025
- Ferromagnetic ordering in mazelike stripe liquid of a dipolar six-state clock model We present a comprehensive numerical study of a six-state clock model with a long-range dipolar type interaction. This model is motivated by the ferroelectric orders in the multiferroic hexagonal manganites. At low temperatures, trimerization of local atomic structures leads to six distinct but energetically degenerate structural distortion, which can be modeled by a six-state clock model. Moreover, the atomic displacements in the trimerized state further produce a local electric polarization whose sign depends on whether the clock variable is even or odd. These induced electric dipoles, which can be modeled by emergent Ising degrees of freedom, interact with each other via long-range dipolar interactions. Extensive Monte Carlo simulations are carried out to investigate low temperature phases resulting from the competing interactions. Upon lowering temperature, the system undergoes two Berezinskii-Kosterlitz-Thouless (BKT) transitions, characteristic of the standard six-state clock model in two dimensions. The dipolar interaction between emergent Ising spins induces a first-order transition into a ground state characterized by a three-fold degenerate stripe order. The intermediate phase between the discontinuous and the second BKT transition corresponds to a maze-like hexagonal liquid with short-range stripe ordering. Moreover, this intermediate phase also exhibits an unusual ferromagnetic order with two adjacent clock variables occupying the two types of stripes of the labyrinthine pattern. 3 authors · Dec 12, 2024
- Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime We study Einstein-Maxwell-dilaton gravity models in four-dimensional anti-de Sitter (AdS) spacetime which admit the Reissner-Nordstrom (RN) black hole solution. We show that below a critical temperature the AdS-RN solution becomes unstable against scalar perturbations and the gravitational system undergoes a phase transition. We show using numerical calculations that the new phase is a charged dilatonic black hole. Using the AdS/CFT correspondence we discuss the phase transition in the dual field theory both for non-vanishing temperatures and in the extremal limit. The extremal solution has a Lifshitz scaling symmetry. We discuss the optical conductivity in the new dual phase and find interesting behavior at low frequencies where it shows a "Drude peak". The resistivity varies with temperature in a non-monotonic way and displays a minimum at low temperatures which is reminiscent of the celebrated Kondo effect. 3 authors · Dec 17, 2009
- Panda: A pretrained forecast model for universal representation of chaotic dynamics Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear DynAmics. We train Panda on a novel synthetic, extensible dataset of 2 times 10^4 chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen real world chaotic systems, and nonlinear resonance patterns in cross-channel attention heads. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics. 3 authors · May 19, 2025
1 Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework. 3 authors · May 5, 2022
- rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics. 3 authors · Jun 25, 2025
- Boson Stars Hosting Black Holes We study a system of a self-gravitating condensate, a boson star, formed from scalar ultra-light dark matter (ULDM), with a black hole hosted at its center. We numerically solve the equations of hydrostatic equilibrium in the non-relativistic limit, consistently incorporating the gravitational potential of the black hole, to obtain all possible configurations of this BS-BH system for different boson star masses, interaction types, and black hole masses. We also propose an analytic expression for the density profile and compare it with the numerical results, finding good agreement for attractive interactions and for a finite range of mass ratios between the black hole and boson star. Finally, considering the inspiral of this BS-BH system with a second, smaller black hole, we study the dephasing of gravitational waves due to the presence of the ULDM environment. A Fisher matrix analysis reveals the regions of parameter space of the ULDM mass and self-coupling that future gravitational-wave observatories such as LISA can probe. 3 authors · Nov 5, 2025
- Automatic-differentiated Physics-Informed Echo State Network (API-ESN) We propose the Automatic-differentiated Physics-Informed Echo State Network (API-ESN). The network is constrained by the physical equations through the reservoir's exact time-derivative, which is computed by automatic differentiation. As compared to the original Physics-Informed Echo State Network, the accuracy of the time-derivative is increased by up to seven orders of magnitude. This increased accuracy is key in chaotic dynamical systems, where errors grows exponentially in time. The network is showcased in the reconstruction of unmeasured (hidden) states of a chaotic system. The API-ESN eliminates a source of error, which is present in existing physics-informed echo state networks, in the computation of the time-derivative. This opens up new possibilities for an accurate reconstruction of chaotic dynamical states. 2 authors · Dec 28, 2020
- Shaping Laser Pulses with Reinforcement Learning High Power Laser (HPL) systems operate in the attoseconds regime -- the shortest timescale ever created by humanity. HPL systems are instrumental in high-energy physics, leveraging ultra-short impulse durations to yield extremely high intensities, which are essential for both practical applications and theoretical advancements in light-matter interactions. Traditionally, the parameters regulating HPL optical performance have been manually tuned by human experts, or optimized using black-box methods that can be computationally demanding. Critically, black box methods rely on stationarity assumptions overlooking complex dynamics in high-energy physics and day-to-day changes in real-world experimental settings, and thus need to be often restarted. Deep Reinforcement Learning (DRL) offers a promising alternative by enabling sequential decision making in non-static settings. This work explores the feasibility of applying DRL to HPL systems, extending the current research by (1) learning a control policy relying solely on non-destructive image observations obtained from readily available diagnostic devices, and (2) retaining performance when the underlying dynamics vary. We evaluate our method across various test dynamics, and observe that DRL effectively enables cross-domain adaptability, coping with dynamics' fluctuations while achieving 90\% of the target intensity in test environments. 3 authors · Mar 1, 2025
- The implications of stochastic gas torques for asymmetric binaries in the LISA band Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes. 5 authors · Feb 14, 2025
- Group Equivariant Fourier Neural Operators for Partial Differential Equations We consider solving partial differential equations (PDEs) with Fourier neural operators (FNOs), which operate in the frequency domain. Since the laws of physics do not depend on the coordinate system used to describe them, it is desirable to encode such symmetries in the neural operator architecture for better performance and easier learning. While encoding symmetries in the physical domain using group theory has been studied extensively, how to capture symmetries in the frequency domain is under-explored. In this work, we extend group convolutions to the frequency domain and design Fourier layers that are equivariant to rotations, translations, and reflections by leveraging the equivariance property of the Fourier transform. The resulting G-FNO architecture generalizes well across input resolutions and performs well in settings with varying levels of symmetry. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS). 6 authors · Jun 9, 2023
1 Novel results obtained by modeling of dynamic processes in superconductors: phase-slip centers as cooling engines Based on a time-dependent Ginzburg-Landau system of equations and finite element modeling, we present novel results related with the physics of phase-slippage in superconducting wires surrounded by a non-superconductive environment. These results are obtained within our previously reported approach related to superconducting rings and superconductive gravitational wave detector transducers. It is shown that the phase-slip centers (PSCs) can be effective in originating not only positive but also negative thermal fluxes. With an appropriate design utilizing thermal diodes, PSCs can serve as cryocooling engines. Operating at Tsim 1 K cryostat cold-finger, they can achieve sub-Kelvin temperatures without using ^3He. 4 authors · Nov 2, 2022
- Mapping gravitational-wave backgrounds in modified theories of gravity using pulsar timing arrays We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse ("breathing") and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background. 3 authors · Jun 29, 2015
- A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime. 3 authors · Dec 8, 2022
- The nature of an imaginary quasi-periodic oscillation in the soft-to-hard transition of MAXI J1820+070 A recent study shows that if the power spectra (PS) of accreting compact objects consist of a combination of Lorentzian functions that are coherent in different energy bands but incoherent with each other, the same is true for the Real and Imaginary parts of the cross spectrum (CS). Using this idea, we discovered imaginary quasi-periodic oscillations (QPOs) in NICER observations of the black hole candidate MAXI J1820+070. The imaginary QPOs appear as narrow features with a small Real and large Imaginary part in the CS but are not significantly detected in the PS when they overlap in frequency with other variability components. The coherence function drops and the phase lags increase abruptly at the frequency of the imaginary QPO. We show that the multi-Lorentzian model that fits the PS and CS of the source in two energy bands correctly reproduces the lags and the coherence, and that the narrow drop of the coherence is caused by the interaction of the imaginary QPO with other variability components. The imaginary QPO appears only in the decay of the outburst, during the transition from the high-soft to the low-hard state of MAXI J1820+070, and its frequency decreases from approximately 5 Hz to around 1 Hz as the source spectrum hardens. We also analysed the earlier observations of the transition, where no narrow features were seen, and we identified a QPO in the PS that appears to evolve into the imaginary QPO as the source hardens. As for the type-B and C QPOs in this source, the rms spectrum of the imaginary QPO increases with energy. The lags of the imaginary QPO are similar to those of the type-B and C QPOs above 2 keV but differ from the lags of those other QPOs below that energy. While the properties of this imaginary QPO resemble those of type-C QPOs, we cannot rule out that it is a new type of QPO. 5 authors · Feb 17, 2025
- Impact of Static Disorder and Dephasing on Quantum Transport in LH1-RC Models We numerically study excitation transfer in an artificial LH1-RC complex -- an N-site donor ring coupled to a central acceptor -- driven by a narrowband optical mode and evolved under a Lindblad master equation with loss and dephasing. In the absence of disorder, the light-driven system exhibits a tall, narrow on-resonance efficiency peak (near unity for our parameters); dephasing lowers and narrows this peak without shifting its position. Off resonance, the efficiency shows environmentally assisted transport with a clear non-monotonic dependence on dephasing and a finite optimum. Under static disorder, two regimes emerge: photon-ring coupling and diagonal energetic disorder mix the drive into dark ring modes, activate dissipative channels, and depress efficiency over a detuning window, whereas intra-ring coupling disorder has a much smaller impact in the tested range; increasing the intra-ring coupling g moves dark-mode crossings away from the operating detuning and restores near-peak performance. In the ordered, symmetric, single-excitation, narrowband limit we analytically derive closed-form transfer efficiencies by projecting onto the k{=}0 bright mode and solving the photon--bright mode--acceptor trimer via a Laplace/linear-algebra (determinant) formula; these expressions include a probability-conservation identity eta + sum_k L_k = 1 that benchmarks the simulations and quantitatively predicts the resonant line shape and its dephasing-induced narrowing. A minimal ring toy model further reproduces coherent trapping and its relief by moderate dephasing (ENAQT). These analytics are exact in the ordered limit and serve as mechanistic guides outside this limit, yielding practical design rules for robust, bio-inspired light-harvesting devices. 4 authors · Sep 23, 2025
- A Low-complexity Structured Neural Network to Realize States of Dynamical Systems Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states. 4 authors · Mar 30, 2025
- Local convergence of the Levenberg-Marquardt method under Hölder metric subregularity We describe and analyse Levenberg-Marquardt methods for solving systems of nonlinear equations. More specifically, we propose an adaptive formula for the Levenberg-Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity of the function defining the equation and Hölder continuity of its gradient mapping. Further, we analyse the local convergence of the method under the additional assumption that the Łojasiewicz gradient inequality holds. We finally report encouraging numerical results confirming the theoretical findings for the problem of computing moiety conserved steady states in biochemical reaction networks. This problem can be cast as finding a solution of a system of nonlinear equations, where the associated mapping satisfies the Łojasiewicz gradient inequality assumption. 4 authors · Mar 21, 2017
- Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits. 13 authors · Oct 6, 2020
- Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry. 3 authors · Sep 30, 2024
- Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices. 8 authors · Jul 31, 2024
- Lensing and wave optics in the strong field of a black hole Gravitational waves (GWs) are lensed by matter, offering a unique probe of both the large-scale structure of the Universe and the fundamental properties of GW propagation. GWs can also be affected by wave optics effects when their wavelength is comparable to the size of the lens. While this regime has been well studied in the Newtonian approximation, the role of strong gravitational fields remains largely unexplored. This is particularly relevant for lensing by intermediate and supermassive black holes (BHs), which can occur near active galactic nuclei or in compact triple systems. In this work, we analyze the lensing of GWs by a non-rotating BH and compare our results to the Newtonian point-mass approximation. We construct frequency-dependent amplification factors that incorporate strong-field effects, revealing explicit polarization mixing and absorption by the event horizon. Using a fiducial GW event, we explore key phenomenological signatures of BH lensing, highlighting new observational opportunities to probe strong gravitational fields through GW lensing. 5 authors · Feb 19, 2025
- Non-Perturbative Hamiltonian and Higher Loop Corrections in USR Inflation Calculating the action and the interaction Hamiltonian at higher orders in cosmological perturbation theory is a cumbersome task. We employ the formalism of EFT of inflation in models of single field ultra slow-roll inflation and obtain a non-perturbative result for the Hamiltonian in terms of the Goldstone field pi. To complete the dictionary, a non-linear relation between the curvature perturbations and pi is presented. Equipped with these non-linear results, we calculate the higher order loop corrections in USR models which are employed for PBHs formation. It is shown that the loop corrections on long CMB scales increase rapidly with the number of loop L and the setup will go out of perturbative control at the four-loop level. 2 authors · Feb 13, 2025
- Optimal fidelity in implementing Grover's search algorithm on open quantum system We investigate the fidelity of Grover's search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence of its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms and we find that there exists a competition between them, leading to an optimum value of the drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential. 2 authors · Mar 3, 2023
- Multi-index Based Solution Theory to the Φ^4 Equation in the Full Subcritical Regime We obtain (small-parameter) well-posedness for the (space-time periodic) Phi^4 equation in the full subcritical regime in the context of regularity structures based on multi-indices. As opposed to Hairer's more extrinsic tree-based setting, due to the intrinsic description encoded by multi-indices, it is not possible to obtain a solution theory via the standard fixed-point argument. Instead, we develop a more intrinsic approach for existence using a variant of the continuity method from classical PDE theory based on a priori estimates for a new `robust' formulation of the equation. This formulation also allows us to obtain uniqueness of solutions and continuity of the solution map in the model norm even at the limit of vanishing regularisation scale. Since our proof relies on the structure of the nonlinearity in only a mild way, we expect the same ideas to be sufficient to treat a more general class of equations. 3 authors · Mar 3, 2025
- Scattered light reduction in Sagnac Speed Meters with Tunable Coherence Sagnac Speed Meter and ring resonators can be used as high precision instruments, but they are limited in their sensitivity through scattered light causing non-linear noise. Here, we experimentally demonstrate a technique called Tunable Coherence, where the long coherence length of the laser is broken in a controlled way, to suppress the coupling of scattered light in a Sagnac interferometer. We demonstrate a scattered light suppression of 24.2 dB in a Sagnac interferometer and discuss the experimental limitations. Further, we show an analytical discussion on how Tunable Coherence could be a fundamental solution to light scattering back from optical surfaces into the counter propagating beam, which is an issue particularly in ring resonators. 3 authors · Feb 11, 2025
- Probing the axion-photon coupling with space-based gravitational waves detectors We propose a simple modification of space-based gravitational wave (GW) detector optical benches which would enable the measurement of vacuum birefringence of light induced by axion dark matterthrough its coupling to electromagnetism. Specifically, we propose to change a half-wave plate by a circular polarizer. While marginally affecting the sensitivity to GW by a factor 2, we show that such an adjustment would make future detectors such as LISA, TianQin, Taiji and Big-Bang Observer the most sensitive experiments at low axion masses 3 authors · Oct 23, 2024
- On the Dynamics of Acceleration in First order Gradient Methods Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method. 5 authors · Sep 22, 2025
- Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves Searches for stochastic gravitational-wave backgrounds using pulsar timing arrays look for correlations in the timing residuals induced by the background across the pulsars in the array. The correlation signature of an isotropic, unpolarized gravitational-wave background predicted by general relativity follows the so-called Hellings and Downs curve, which is a relatively simple function of the angle between a pair of Earth-pulsar baselines. In this paper, we give a pedagogical discussion of the Hellings and Downs curve for pulsar timing arrays, considering simpler analogous scenarios involving sound and electromagnetic waves. We calculate Hellings-and-Downs-type functions for these two scenarios and develop a framework suitable for doing more general correlation calculations. 2 authors · Dec 2, 2014
- A Neural Network-Based Search for Unmodeled Transients in LIGO-Virgo-KAGRA's Third Observing Run This paper presents the results of a Neural Network (NN)-based search for short-duration gravitational-wave transients in data from the third observing run of LIGO, Virgo, and KAGRA. The search targets unmodeled transients with durations of milliseconds to a few seconds in the 30-1500 Hz frequency band, without assumptions about the incoming signal direction, polarization, or morphology. Using the Gravitational Wave Anomalous Knowledge (GWAK) method, three compact binary coalescences (CBCs) identified by existing pipelines are successfully detected, along with a range of detector glitches. The algorithm constructs a low-dimensional embedded space to capture the physical features of signals, enabling the detection of CBCs, detector glitches, and unmodeled transients. This study demonstrates GWAK's ability to enhance gravitational-wave searches beyond the limits of existing pipelines, laying the groundwork for future detection strategies. 16 authors · Dec 27, 2024
- A comparison between higher-order nonclassicalities of superposition engineered coherent and thermal states We consider an experimentally obtainable SUP operator, defined by using a generalized superposition of products of field annihilation (a) and creation (a^dagger) operators of the type, A = saa^dagger+t{a^dagger}a with s^2+t^2=1. We apply this SUP operator on coherent and thermal quantum states, the states thus produced are referred as SUP-operated coherent state (SOCS) and SUP-operated thermal state (SOTS), respectively. In the present work, we report a comparative study between the higher-order nonclassical properties of SOCS and SOTS. The comparison is performed by using a set of nonclassicality witnesses (e.g., higher-order antiubunching, higher-order sub-Poissonian photon statistics, higher-order squeezing, Agarwal-Tara parameter, Klyshko's condition). The existence of higher-order nonclassicalities in SOCS and SOTS have been investigated for the first time. In view of possible experimental verification of the proposed scheme, we present exact calculations to reveal the effect of non-unit quantum efficiency of quantum detector on higher-order nonclassicalities. 2 authors · Apr 13, 2022
- Deep Learning with Coherent Nanophotonic Circuits Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor. 11 authors · Oct 7, 2016
- One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy We address effects of spin-orbit coupling (SOC), phenomenologically added to a two-component Bose-Einstein condensate composed of particles moving by Levy flights, in one- and two-dimensional (1D and 2D) settings. The corresponding system of coupled Gross-Pitaevskii equations includes fractional kinetic-energy operators, characterized by the Levy index, \alpha < 2 (the normal kinetic energy corresponds to \alpha = 2). The SOC terms, with strength \lambda, produce strong effects in the 2D case: they create families of stable solitons of the semi-vortex (SV) and mixed-mode (MM) types in the interval of 1 < \alpha < 2, where the supercritical collapse does not admit the existence of stable solitons in the absence of the SOC. At \lambda --> 0, amplitudes of these solitons vanish as (\lambda)^{1/(\alpha - 1)}. 2 authors · Jun 1, 2022
- A photonic cluster state machine gun We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing. 2 authors · Oct 14, 2008
- Black holes and the loss landscape in machine learning Understanding the loss landscape is an important problem in machine learning. One key feature of the loss function, common to many neural network architectures, is the presence of exponentially many low lying local minima. Physical systems with similar energy landscapes may provide useful insights. In this work, we point out that black holes naturally give rise to such landscapes, owing to the existence of black hole entropy. For definiteness, we consider 1/8 BPS black holes in N = 8 string theory. These provide an infinite family of potential landscapes arising in the microscopic descriptions of corresponding black holes. The counting of minima amounts to black hole microstate counting. Moreover, the exact numbers of the minima for these landscapes are a priori known from dualities in string theory. Some of the minima are connected by paths of low loss values, resembling mode connectivity. We estimate the number of runs needed to find all the solutions. Initial explorations suggest that Stochastic Gradient Descent can find a significant fraction of the minima. 3 authors · Jun 26, 2023
- Heating and scattering of stellar distributions by ultralight dark matter Due to wave interference, an ultralight light dark matter halo has stochastic, granular substructures which can scatter stars, leading to the heating of stellar distributions. Studies of this phenomenon have placed lower bounds on the ultralight dark matter mass. In this paper we investigate a number of relevant systematic effects, including: (1) the heating by the central soliton, (2) the self-gravity of the stars, (3) the suppression of heating in a tidally stripped halo, and (4) the tidal field suppression of heating when the stellar cluster is much smaller than the de Broglie wavelength. The first three effects are quantified by studying the dynamics of stellar particles in Schrodinger-Poisson simulations of ultralight dark matter halos, while the last effect is studied using analytic approximations. 3 authors · Oct 19, 2025
- Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube. 4 authors · Oct 21, 2022
1 Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude. 3 authors · Dec 29, 2022
- Astrometric Effects of a Stochastic Gravitational Wave Background A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power. 2 authors · Sep 21, 2010
1 Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters. 5 authors · Apr 3, 2023
- Coherent shuttle of electron-spin states We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip. 5 authors · Jan 3, 2017
- Global existence and decay estimates for a viscoelastic plate equation with nonlinear damping and logarithmic nonlinearity In this article, we consider a viscoelastic plate equation with a logarithmic nonlinearity in the presence of nonlinear frictional damping term. Using the the Faedo-Galerkin method we establish the global existence of the solution of the problem and we also prove few general decay rate results. 2 authors · Jan 4, 2022
- On Stochastic Shell Models of Turbulence We prove existence of weak and strong solutions and uniqueness for a viscous dyadic model driven by additive white noise in time using a path-wise approach. Existence of invariant measures also established and a simple balance relation among the mean rates of energy injection, dissipation and flux is derived and we investigate the asymptotic exponents zeta_{p} of the p-order structure functions. 1 authors · Dec 15, 2017
- Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology We study a mechanism to produce the circular polarization of primordial gravitational waves. The circular polarization is generated during the super-inflation driven by the Gauss-Bonnet term in the string-inspired cosmology. The instability in the tensor mode caused by the Gauss-Bonnet term and the parity violation due to the gravitational Chern-Simons term are the essential ingredients of the mechanism. We also discuss detectability of the produced circular polarization of gravitational waves. It turns out that the simple model of single-field inflation contradicts CMB observations. To circumvent this difficulty, we propose a two-field inflation model. In this two-field model, the circular polarization of gravitational waves is created in the frequency range designed by the Big-Bang Observer (BBO) or the deci-hertz gravitational-wave observatory (DECIGO). 3 authors · Jun 25, 2007
- Physics-Informed Neural Networks for One-Dimensional Quantum Well Problems We implement physics-informed neural networks (PINNs) to solve the time-independent Schr\"odinger equation for three canonical one-dimensional quantum potentials: an infinite square well, a finite square well, and a finite barrier. The PINN models incorporate trial wavefunctions that exactly satisfy boundary conditions (Dirichlet zeros at domain boundaries), and they optimize a loss functional combining the PDE residual with a normalization constraint. For the infinite well, the ground-state energy is known (E = pi^2 in dimensionless units) and held fixed in training, whereas for the finite well and barrier, the eigenenergy is treated as a trainable parameter. We use fully-connected neural networks with smooth activation functions to represent the wavefunction and demonstrate that PINNs can learn the ground-state eigenfunctions and eigenvalues for these quantum systems. The results show that the PINN-predicted wavefunctions closely match analytical solutions or expected behaviors, and the learned eigenenergies converge to known values. We present training logs and convergence of the energy parameter, as well as figures comparing the PINN solutions to exact results. The discussion addresses the performance of PINNs relative to traditional numerical methods, highlighting challenges such as convergence to the correct eigenvalue, sensitivity to initialization, and the difficulty of modeling discontinuous potentials. We also discuss the importance of the normalization term to resolve the scaling ambiguity of the wavefunction. Finally, we conclude that PINNs are a viable approach for quantum eigenvalue problems, and we outline future directions including extensions to higher-dimensional and time-dependent Schr\"odinger equations. 1 authors · Apr 7, 2025
- Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead. 4 authors · Feb 23, 2024
- Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems In this work, we generalize the reaction-diffusion equation in statistical physics, Schr\"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics into the neural partial differential equations (NPDE), which can be considered as the fundamental equations in the field of artificial intelligence research. We take finite difference method to discretize NPDE for finding numerical solution, and the basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated. The learning strategies, such as Adaptive moment estimation, L-BFGS, pseudoinverse learning algorithms and partial differential equation constrained optimization, are also presented. We believe it is of significance that presented clear physical image of interpretable deep neural networks, which makes it be possible for applying to analog computing device design, and pave the road to physical artificial intelligence. 3 authors · Mar 9, 2021
- PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed. 3 authors · Jul 16, 2024
- Laser Pulse Duration Optimization With Numerical Methods In this study we explore the optimization of laser pulse duration to obtain the shortest possible pulse. We do this by employing a feedback loop between a pulse shaper and pulse duration measurements. We apply to this problem several iterative algorithms including gradient descent, Bayesian Optimization and genetic algorithms, using a simulation of the actual laser represented via a semi-physical model of the laser based on the process of linear and non-linear phase accumulation. 5 authors · Nov 23, 2022
1 Rieger, Schwabe, Suess-de Vries: The Sunny Beats of Resonance We propose a self-consistent explanation of Rieger-type periodicities, the Schwabe cycle, and the Suess-de Vries cycle of the solar dynamo in terms of resonances of various wave phenomena with gravitational forces exerted by the orbiting planets. Starting on the high-frequency side, we show that the two-planet spring tides of Venus, Earth and Jupiter are able to excite magneto-Rossby waves which can be linked with typical Rieger-type periods. We argue then that the 11.07-year beat period of those magneto-Rossby waves synchronizes an underlying conventional alpha-Omega-dynamo, by periodically changing either the field storage capacity in the tachocline or some portion of the alpha-effect therein. We also strengthen the argument that the Suess-de Vries cycle appears as an 193-year beat period between the 22.14-year Hale cycle and a spin-orbit coupling effect related with the 19.86-year rosette-like motion of the Sun around the barycenter. 5 authors · Sep 1, 2023
- Accelerated Stochastic Optimization Methods under Quasar-convexity Non-convex optimization plays a key role in a growing number of machine learning applications. This motivates the identification of specialized structure that enables sharper theoretical analysis. One such identified structure is quasar-convexity, a non-convex generalization of convexity that subsumes convex functions. Existing algorithms for minimizing quasar-convex functions in the stochastic setting have either high complexity or slow convergence, which prompts us to derive a new class of stochastic methods for optimizing smooth quasar-convex functions. We demonstrate that our algorithms have fast convergence and outperform existing algorithms on several examples, including the classical problem of learning linear dynamical systems. We also present a unified analysis of our newly proposed algorithms and a previously studied deterministic algorithm. 3 authors · May 8, 2023
- Variational integrals on Hessian spaces: partial regularity for critical points We develop regularity theory for critical points of variational integrals defined on Hessian spaces of functions on open, bounded subdomains of R^n, under compactly supported variations. The critical point solves a fourth order nonlinear equation in double divergence form. We show that for smooth convex functionals, a W^{2,infty} critical point with bounded Hessian is smooth provided that its Hessian has a small bounded mean oscillation (BMO). We deduce that the interior singular set of a critical point has Hausdorff dimension at most n-p_0, for some p_0 in (2,3). We state some applications of our results to variational problems in Lagrangian geometry. Finally, we use the Hamiltonian stationary equation to demonstrate the importance of our assumption on the a priori regularity of the critical point. 2 authors · Jul 3, 2023
- Kolmogorov Arnold Informed neural network: A physics-informed deep learning framework for solving PDEs based on Kolmogorov Arnold Networks AI for partial differential equations (PDEs) has garnered significant attention, particularly with the emergence of Physics-informed neural networks (PINNs). The recent advent of Kolmogorov-Arnold Network (KAN) indicates that there is potential to revisit and enhance the previously MLP-based PINNs. Compared to MLPs, KANs offer interpretability and require fewer parameters. PDEs can be described in various forms, such as strong form, energy form, and inverse form. While mathematically equivalent, these forms are not computationally equivalent, making the exploration of different PDE formulations significant in computational physics. Thus, we propose different PDE forms based on KAN instead of MLP, termed Kolmogorov-Arnold-Informed Neural Network (KINN). We systematically compare MLP and KAN in various numerical examples of PDEs, including multi-scale, singularity, stress concentration, nonlinear hyperelasticity, heterogeneous, and complex geometry problems. Our results demonstrate that KINN significantly outperforms MLP in terms of accuracy and convergence speed for numerous PDEs in computational solid mechanics, except for the complex geometry problem. This highlights KINN's potential for more efficient and accurate PDE solutions in AI for PDEs. 8 authors · Jun 16, 2024
- Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints. 2 authors · May 9, 2023
- Stochastic lensing of stars by ultralight dark matter halos Ultralight dark matter is an interesting dark matter candidate describing the lightest end of the mass parameter space. This model produces an oscillating granular pattern in halo densities. These fluctuations have the potential to produce a time-varying density along the line of sight creating a small lensing signal for any stars observed through a dark matter halo which oscillates on the de Broglie timescale. In this work, we study this stochastic lensing signal taking into account the impact of density granules as well as the central soliton. We calculate the amplitude and temporal properties of this signal and estimate how stellar observations may be used to constrain the ultralight dark matter mass and abundance. 5 authors · Feb 27, 2025
- MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks Physics-informed Neural Networks (PINNs) have recently achieved remarkable progress in solving Partial Differential Equations (PDEs) in various fields by minimizing a weighted sum of PDE loss and boundary loss. However, there are several critical challenges in the training of PINNs, including the lack of theoretical frameworks and the imbalance between PDE loss and boundary loss. In this paper, we present an analysis of second-order non-homogeneous PDEs, which are classified into three categories and applicable to various common problems. We also characterize the connections between the training loss and actual error, guaranteeing convergence under mild conditions. The theoretical analysis inspires us to further propose MultiAdam, a scale-invariant optimizer that leverages gradient momentum to parameter-wisely balance the loss terms. Extensive experiment results on multiple problems from different physical domains demonstrate that our MultiAdam solver can improve the predictive accuracy by 1-2 orders of magnitude compared with strong baselines. 6 authors · Jun 5, 2023
- Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learning when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural networks, a recent line of works proposes to study over-parameterized QNNs by examining a quantum version of tangent kernels. In this work, we study the dynamics of QNNs and show that contrary to popular belief it is qualitatively different from that of any kernel regression: due to the unitarity of quantum operations, there is a non-negligible deviation from the tangent kernel regression derived at the random initialization. As a result of the deviation, we prove the at-most sublinear convergence for QNNs with Pauli measurements, which is beyond the explanatory power of any kernel regression dynamics. We then present the actual dynamics of QNNs in the limit of over-parameterization. The new dynamics capture the change of convergence rate during training and implies that the range of measurements is crucial to the fast QNN convergence. 4 authors · Mar 26, 2023
- Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable super-massive black hole binary systems, is one of the primary targets for Pulsar Timing Arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterisation of the power at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalised in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave power on the sky into multipole moments. We introduce the concept of generalised overlap reduction functions which characterise the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal characterised by a generic anisotropy, the generalised overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalised overlap reduction functions for a generic level of anisotropy and Pulsar Timing Array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by super-massive black hole binary systems. 4 authors · Jun 23, 2013
- Primordial Black Holes from Kinetic Preheating We demonstrate that violent kinetic preheating following inflation can lead to the formation of black holes in the early Universe. In alpha-attractor models with derivative inflaton couplings, nonlinear amplification of field fluctuations drives large spacetime curvature and gravitational collapse shortly after inflation ends. Using fully general-relativistic lattice simulations, we find that these dynamics produce black holes with masses of order tens of grams at sub-horizon scales, without requiring large primordial curvature perturbations. Although such micro-black holes evaporate rapidly via Hawking radiation, their formation modifies the post-inflationary equation of state and their evaporation can successfully reheat the Universe before Big Bang nucleosynthesis. These results identify kinetic preheating as a new, efficient channel for black-hole production and establish a direct connection between inflationary symmetries and strong-gravity phenomena at reheating. 3 authors · Nov 3, 2025
- DC is all you need: describing ReLU from a signal processing standpoint Non-linear activation functions are crucial in Convolutional Neural Networks. However, until now they have not been well described in the frequency domain. In this work, we study the spectral behavior of ReLU, a popular activation function. We use the ReLU's Taylor expansion to derive its frequency domain behavior. We demonstrate that ReLU introduces higher frequency oscillations in the signal and a constant DC component. Furthermore, we investigate the importance of this DC component, where we demonstrate that it helps the model extract meaningful features related to the input frequency content. We accompany our theoretical derivations with experiments and real-world examples. First, we numerically validate our frequency response model. Then we observe ReLU's spectral behavior on two example models and a real-world one. Finally, we experimentally investigate the role of the DC component introduced by ReLU in the CNN's representations. Our results indicate that the DC helps to converge to a weight configuration that is close to the initial random weights. 4 authors · Jul 23, 2024
- Frequency-domain multiplexing of SNSPDs with tunable superconducting resonators This work culminates in a demonstration of an alternative Frequency Domain Multiplexing (FDM) scheme for Superconducting Nanowire Single-Photon Detectors (SNSPDs) using the Kinetic inductance Parametric UP-converter (KPUP) made out of NbTiN. There are multiple multiplexing architectures for SNSPDs that are already in use, but FDM could prove superior in applications where the operational bias currents are very low, especially for mid- and far-infrared SNSPDs. Previous FDM schemes integrated the SNSPD within the resonator, while in this work we use an external resonator, which gives more flexibility to optimize the SNSPD architecture. The KPUP is a DC-biased superconducting resonator in which a nanowire is used as its inductive element to enable sensitivity to current perturbations. When coupled to an SNSPD, the KPUP can be used to read out current pulses on the few μA scale. The KPUP is made out of NbTiN, which has high non-linear kinetic inductance for increased sensitivity at higher current bias and high operating temperature. Meanwhile, the SNSPD is made from WSi, which is a popular material for broadband SNSPDs. To read out the KPUP and SNSPD array, a software-defined radio platform and a graphics processing unit are used. Frequency Domain Multiplexed SNSPDs have applications in astronomy, remote sensing, exoplanet science, dark matter detection, and quantum sensing. 12 authors · Jan 30, 2024
- Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups. 4 authors · Sep 11, 2020
- An Artificial Neuron Implemented on an Actual Quantum Processor Artificial neural networks are the heart of machine learning algorithms and artificial intelligence protocols. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt's `perceptron', but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a perceptron, which shows exponential advantage in encoding resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives remarkably good answers against the expected results. We show that this quantum model of a perceptron can be used as an elementary nonlinear classifier of simple patterns, as a first step towards practical training of artificial quantum neural networks to be efficiently implemented on near-term quantum processing hardware. 4 authors · Nov 6, 2018
1 Metrological detection of multipartite entanglement through dynamical symmetries Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology and understanding quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries, i.e., operators with periodic time dependence. We demonstrate that this bound can be saturated when considering a complete set of dynamical symmetries. Moreover, this lower bound with dynamical symmetries can be generalized to the QFI matrix and to the QFI for the thermal pure states, predicted by the eigenstate thermalization hypothesis. Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system, from its nonstationary dynamical properties, and is promising for studying emergent nonequilibrium many-body physics. 2 authors · Apr 2, 2023