new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.

  • 10 authors
·
May 30 3

Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning

Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.

  • 7 authors
·
Mar 10 2

Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations

Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.

  • 3 authors
·
Nov 9, 2023

AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance

Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of implicit rewards, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce Adaptive Meta Fine-Tuning (AMFT), a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a meta-gradient adaptive weight controller that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment.Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.

  • 3 authors
·
Aug 9 2

On the Emergence of Thinking in LLMs I: Searching for the Right Intuition

Recent AI advancements, such as OpenAI's new models, are transforming LLMs into LRMs (Large Reasoning Models) that perform reasoning during inference, taking extra time and compute for higher-quality outputs. We aim to uncover the algorithmic framework for training LRMs. Methods like self-consistency, PRM, and AlphaZero suggest reasoning as guided search. We ask: what is the simplest, most scalable way to enable search in LLMs? We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP). RLSP involves three steps: (1) supervised fine-tuning with human or synthetic demonstrations of the reasoning process, (2) using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and (3) RL training with an outcome verifier to ensure correctness while preventing reward hacking. Our key innovation is to decouple exploration and correctness signals during PPO training, carefully balancing them to improve performance and efficiency. Empirical studies in the math domain show that RLSP improves reasoning. On the Llama-3.1-8B-Instruct model, RLSP can boost performance by 23% in MATH-500 test set; On AIME 2024 math problems, Qwen2.5-32B-Instruct improved by 10% due to RLSP. However, a more important finding of this work is that the models trained using RLSP, even with the simplest exploration reward that encourages the model to take more intermediate steps, showed several emergent behaviors such as backtracking, exploration of ideas, and verification. These findings demonstrate that RLSP framework might be enough to enable emergence of complex reasoning abilities in LLMs when scaled. Lastly, we propose a theory as to why RLSP search strategy is more suitable for LLMs inspired by a remarkable result that says CoT provably increases computational power of LLMs, which grows as the number of steps in CoT li2024chain,merrill2023expresssive.

  • 8 authors
·
Feb 10

Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining

Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models for advanced mathematical reasoning and coding. Following the success of frontier reasoning models, recent work has demonstrated that RL fine-tuning consistently improves performance, even in smaller-scale models; however, the underlying mechanisms driving these improvements are not well-understood. Understanding the effects of RL fine-tuning requires disentangling its interaction with pretraining data composition, hyperparameters, and model scale, but such problems are exacerbated by the lack of transparency regarding the training data used in many existing models. In this work, we present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch on different mixtures of fully open datasets. We investigate the effects of various RL fine-tuning algorithms (PPO, GRPO, and Expert Iteration) across models of different scales. Our study reveals that RL algorithms consistently converge towards a dominant output distribution, amplifying patterns in the pretraining data. We also find that models of different scales trained on the same data mixture will converge to distinct output distributions, suggesting that there are scale-dependent biases in model generalization. Moreover, we find that RL post-training on simpler questions can lead to performance gains on harder ones, indicating that certain reasoning capabilities generalize across tasks. Our findings show that small-scale proxies in controlled settings can elicit interesting insights regarding the role of RL in shaping language model behavior.

  • 6 authors
·
Apr 10

Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data

The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.

  • 5 authors
·
Dec 10, 2024

Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance

Denoising-based generative models, particularly diffusion and flow matching algorithms, have achieved remarkable success. However, aligning their output distributions with complex downstream objectives, such as human preferences, compositional accuracy, or data compressibility, remains challenging. While reinforcement learning (RL) fine-tuning methods, inspired by advances in RL from human feedback (RLHF) for large language models, have been adapted to these generative frameworks, current RL approaches are suboptimal for diffusion models and offer limited flexibility in controlling alignment strength after fine-tuning. In this work, we reinterpret RL fine-tuning for diffusion models through the lens of stochastic differential equations and implicit reward conditioning. We introduce Reinforcement Learning Guidance (RLG), an inference-time method that adapts Classifier-Free Guidance (CFG) by combining the outputs of the base and RL fine-tuned models via a geometric average. Our theoretical analysis shows that RLG's guidance scale is mathematically equivalent to adjusting the KL-regularization coefficient in standard RL objectives, enabling dynamic control over the alignment-quality trade-off without further training. Extensive experiments demonstrate that RLG consistently improves the performance of RL fine-tuned models across various architectures, RL algorithms, and downstream tasks, including human preferences, compositional control, compressibility, and text rendering. Furthermore, RLG supports both interpolation and extrapolation, thereby offering unprecedented flexibility in controlling generative alignment. Our approach provides a practical and theoretically sound solution for enhancing and controlling diffusion model alignment at inference. The source code for RLG is publicly available at the Github: https://github.com/jinluo12345/Reinforcement-learning-guidance.

  • 8 authors
·
Aug 28

CLS-RL: Image Classification with Rule-Based Reinforcement Learning

Classification is a core task in machine learning. Recent research has shown that although Multimodal Large Language Models (MLLMs) are initially poor at image classification, fine-tuning them with an adequate amount of data can significantly enhance their performance, making them comparable to SOTA classification models. However, acquiring large-scale labeled data is expensive. In this paper, we explore few-shot MLLM classification fine-tuning. We found that SFT can cause severe overfitting issues and may even degrade performance over the zero-shot approach. To address this challenge, inspired by the recent successes in rule-based reinforcement learning, we propose CLS-RL, which uses verifiable signals as reward to fine-tune MLLMs. We discovered that CLS-RL outperforms SFT in most datasets and has a much higher average accuracy on both base-to-new and few-shot learning setting. Moreover, we observed a free-lunch phenomenon for CLS-RL; when models are fine-tuned on a particular dataset, their performance on other distinct datasets may also improve over zero-shot models, even if those datasets differ in distribution and class names. This suggests that RL-based methods effectively teach models the fundamentals of classification. Lastly, inspired by recent works in inference time thinking, we re-examine the `thinking process' during fine-tuning, a critical aspect of RL-based methods, in the context of visual classification. We question whether such tasks require extensive thinking process during fine-tuning, proposing that this may actually detract from performance. Based on this premise, we introduce the No-Thinking-CLS-RL method, which minimizes thinking processes during training by setting an equality accuracy reward. Our findings indicate that, with much less fine-tuning time, No-Thinking-CLS-RL method achieves superior in-domain performance and generalization capabilities than CLS-RL.

  • 5 authors
·
Mar 20 2

Self-Evolving Curriculum for LLM Reasoning

Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.

  • 9 authors
·
May 20

A Mathematical Framework for Custom Reward Functions in Job Application Evaluation using Reinforcement Learning

Conventional Applicant Tracking Systems (ATS) tend to be inflexible keyword-matchers, and deny gifted candidates a role due to a few minor semantic mismatches. This article describes a new two-step process to design a more refined resume evaluation model based on a small language model (<600M parameters) that is finetuned using GRPO on a custom reward function. To begin with, Supervised Fine-Tuning (SFT) was used to build a solid baseline model. Second, this SFT model was also optimized with the help of Reinforcement Learning (RL) through GRPO under the guidance of a new, multi-component reward function that can holistically assess candidates beyond simple keyword matching. We indicate that the RL application presents a critical problem of reward hacking due to the initial experiments of aggressive penalties, which produces faulty, excessively negative model behaviors. We have overcome this challenge by refining the reward function repeatedly and training hyperparameters into a stable "gentle polishing process" of the reward function. Our resulting GRPO-polished model demonstrates significant real-world efficacy, achieving a final accuracy of 91% on unseen test data. The model shows a strong ability to correctly identify qualified candidates (recall of 0.85 for the 'SELECTED' class) while also showing exceptional precision (1.0), confirming its reliability. These results indicate that a properly executed, two-step fine-tuning procedure can indeed effectively refine a small language model to be able to conduct fine-tuned and human-like candidate scoring, overcoming the drawbacks of both traditional ATS and naive RL usage.

  • 7 authors
·
Nov 20

On the Impact of Fine-Tuning on Chain-of-Thought Reasoning

Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in understanding the impact of fine-tuning on the reasoning capabilities of LLMs. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.

  • 3 authors
·
Nov 22, 2024

RL with KL penalties is better viewed as Bayesian inference

Reinforcement learning (RL) is frequently employed in fine-tuning large language models (LMs), such as GPT-3, to penalize them for undesirable features of generated sequences, such as offensiveness, social bias, harmfulness or falsehood. The RL formulation involves treating the LM as a policy and updating it to maximise the expected value of a reward function which captures human preferences, such as non-offensiveness. In this paper, we analyze challenges associated with treating a language model as an RL policy and show how avoiding those challenges requires moving beyond the RL paradigm. We start by observing that the standard RL approach is flawed as an objective for fine-tuning LMs because it leads to distribution collapse: turning the LM into a degenerate distribution. Then, we analyze KL-regularised RL, a widely used recipe for fine-tuning LMs, which additionally constrains the fine-tuned LM to stay close to its original distribution in terms of Kullback-Leibler (KL) divergence. We show that KL-regularised RL is equivalent to variational inference: approximating a Bayesian posterior which specifies how to update a prior LM to conform with evidence provided by the reward function. We argue that this Bayesian inference view of KL-regularised RL is more insightful than the typically employed RL perspective. The Bayesian inference view explains how KL-regularised RL avoids the distribution collapse problem and offers a first-principles derivation for its objective. While this objective happens to be equivalent to RL (with a particular choice of parametric reward), there exist other objectives for fine-tuning LMs which are no longer equivalent to RL. That observation leads to a more general point: RL is not an adequate formal framework for problems such as fine-tuning language models. These problems are best viewed as Bayesian inference: approximating a pre-defined target distribution.

  • 3 authors
·
May 23, 2022

Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning

The pre-train and fine-tune paradigm in machine learning has had dramatic success in a wide range of domains because the use of existing data or pre-trained models on the internet enables quick and easy learning of new tasks. We aim to enable this paradigm in robotic reinforcement learning, allowing a robot to learn a new task with little human effort by leveraging data and models from the Internet. However, reinforcement learning often requires significant human effort in the form of manual reward specification or environment resets, even if the policy is pre-trained. We introduce RoboFuME, a reset-free fine-tuning system that pre-trains a multi-task manipulation policy from diverse datasets of prior experiences and self-improves online to learn a target task with minimal human intervention. Our insights are to utilize calibrated offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy in the presence of distribution shifts and leverage pre-trained vision language models (VLMs) to build a robust reward classifier for autonomously providing reward signals during the online fine-tuning process. In a diverse set of five real robot manipulation tasks, we show that our method can incorporate data from an existing robot dataset collected at a different institution and improve on a target task within as little as 3 hours of autonomous real-world experience. We also demonstrate in simulation experiments that our method outperforms prior works that use different RL algorithms or different approaches for predicting rewards. Project website: https://robofume.github.io

  • 6 authors
·
Oct 23, 2023

AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy

In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B

  • 7 authors
·
Jun 16 4

Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions

Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, ReLIFT (Reinforcement Learning Interleaved with Online Fine-Tuning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.

D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning

Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/

  • 12 authors
·
Aug 15, 2024 2

Bridging Supervised Learning and Reinforcement Learning in Math Reasoning

Reinforcement Learning (RL) has played a central role in the recent surge of LLMs' math abilities by enabling self-improvement through binary verifier signals. In contrast, Supervised Learning (SL) is rarely considered for such verification-driven training, largely due to its heavy reliance on reference answers and inability to reflect on mistakes. In this work, we challenge the prevailing notion that self-improvement is exclusive to RL and propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers. In online training, instead of throwing away self-generated negative answers, NFT constructs an implicit negative policy to model them. This implicit policy is parameterized with the same positive LLM we target to optimize on positive data, enabling direct policy optimization on all LLMs' generations. We conduct experiments on 7B and 32B models in math reasoning tasks. Results consistently show that through the additional leverage of negative feedback, NFT significantly improves over SL baselines like Rejection sampling Fine-Tuning, matching or even surpassing leading RL algorithms like GRPO and DAPO. Furthermore, we demonstrate that NFT and GRPO are actually equivalent in strict-on-policy training, even though they originate from entirely different theoretical foundations. Our experiments and theoretical findings bridge the gap between SL and RL methods in binary-feedback learning systems.

Coevolving with the Other You: Fine-Tuning LLM with Sequential Cooperative Multi-Agent Reinforcement Learning

Reinforcement learning (RL) has emerged as a pivotal technique for fine-tuning large language models (LLMs) on specific tasks. However, prevailing RL fine-tuning methods predominantly rely on PPO and its variants. Though these algorithms are effective in general RL settings, they often exhibit suboptimal performance and vulnerability to distribution collapse when applied to the fine-tuning of LLMs. In this paper, we propose CORY, extending the RL fine-tuning of LLMs to a sequential cooperative multi-agent reinforcement learning framework, to leverage the inherent coevolution and emergent capabilities of multi-agent systems. In CORY, the LLM to be fine-tuned is initially duplicated into two autonomous agents: a pioneer and an observer. The pioneer generates responses based on queries, while the observer generates responses using both the queries and the pioneer's responses. The two agents are trained together. During training, the agents exchange roles periodically, fostering cooperation and coevolution between them. Experiments evaluate CORY's performance by fine-tuning GPT-2 and Llama-2 under subjective and objective reward functions on the IMDB Review and GSM8K datasets, respectively. Results show that CORY outperforms PPO in terms of policy optimality, resistance to distribution collapse, and training robustness, thereby underscoring its potential as a superior methodology for refining LLMs in real-world applications.

  • 7 authors
·
Oct 8, 2024

Breaking Reward Collapse: Adaptive Reinforcement for Open-ended Medical Reasoning with Enhanced Semantic Discrimination

Reinforcement learning (RL) with rule-based rewards has demonstrated strong potential in enhancing the reasoning and generalization capabilities of vision-language models (VLMs) and large language models (LLMs), while reducing computational overhead. However, its application in medical imaging remains underexplored. Existing reinforcement fine-tuning (RFT) approaches in this domain primarily target closed-ended visual question answering (VQA), limiting their applicability to real-world clinical reasoning. In contrast, open-ended medical VQA better reflects clinical practice but has received limited attention. While some efforts have sought to unify both formats via semantically guided RL, we observe that model-based semantic rewards often suffer from reward collapse, where responses with significant semantic differences receive similar scores. To address this, we propose ARMed (Adaptive Reinforcement for Medical Reasoning), a novel RL framework for open-ended medical VQA. ARMed first incorporates domain knowledge through supervised fine-tuning (SFT) on chain-of-thought data, then applies reinforcement learning with textual correctness and adaptive semantic rewards to enhance reasoning quality. We evaluate ARMed on six challenging medical VQA benchmarks. Results show that ARMed consistently boosts both accuracy and generalization, achieving a 32.64% improvement on in-domain tasks and an 11.65% gain on out-of-domain benchmarks. These results highlight the critical role of reward discriminability in medical RL and the promise of semantically guided rewards for enabling robust and clinically meaningful multimodal reasoning.

  • 7 authors
·
Aug 18

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Fine-tuning (via methods such as instruction-tuning or reinforcement learning from human feedback) is a crucial step in training language models to robustly carry out tasks of interest. However, we lack a systematic understanding of the effects of fine-tuning, particularly on tasks outside the narrow fine-tuning distribution. In a simplified scenario, we demonstrate that improving performance on tasks within the fine-tuning data distribution comes at the expense of suppressing model capabilities on other tasks. This degradation is especially pronounced for tasks "closest" to the fine-tuning distribution. We hypothesize that language models implicitly infer the task of the prompt corresponds, and the fine-tuning process predominantly skews this task inference towards tasks in the fine-tuning distribution. To test this hypothesis, we propose Conjugate Prompting to see if we can recover pretrained capabilities. Conjugate prompting artificially makes the task look farther from the fine-tuning distribution while requiring the same capability. We find that conjugate prompting systematically recovers some of the pretraining capabilities on our synthetic setup. We then apply conjugate prompting to real-world LLMs using the observation that fine-tuning distributions are typically heavily skewed towards English. We find that simply translating the prompts to different languages can cause the fine-tuned models to respond like their pretrained counterparts instead. This allows us to recover the in-context learning abilities lost via instruction tuning, and more concerningly, to recover harmful content generation suppressed by safety fine-tuning in chatbots like ChatGPT.

  • 3 authors
·
Sep 18, 2023

IRCoCo: Immediate Rewards-Guided Deep Reinforcement Learning for Code Completion

Code completion aims to enhance programming productivity by predicting potential code based on the current programming context. Recently, pretrained language models (LMs) have become prominent in this field. Various approaches have been proposed to fine-tune LMs using supervised fine-tuning (SFT) techniques for code completion. However, the inherent exposure bias of these models can cause errors to accumulate early in the sequence completion, leading to even more errors in subsequent completions. To address this problem, deep reinforcement learning (DRL) is an alternative technique for fine-tuning LMs for code completion, which can improve the generalization capabilities and overall performance. Nevertheless, integrating DRL-based strategies into code completion faces two major challenges: 1) The dynamic nature of the code context requires the completion model to quickly adapt to changes, which poses difficulties for conventional DRL strategies that focus on delayed rewarding of the final code state. 2) It is difficult to evaluate the correctness of partial code, thus the reward redistribution-based strategies cannot be adapted to code completion. To tackle these challenges, we propose IRCoCo, a code completion-specific DRL-based fine-tuning framework. This framework is designed to provide immediate rewards as feedback for detecting dynamic context changes arising from continuous edits during code completion. With the aid of immediate feedback, the fine-tuned LM can gain a more precise understanding of the current context, thereby enabling effective adjustment of the LM and optimizing code completion in a more refined manner. Experimental results demonstrate that fine-tuning pretrained LMs with IRCoCo leads to significant improvements in the code completion task, outperforming both SFT-based and other DRL-based baselines.

  • 8 authors
·
Jan 29, 2024

PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models

Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.

  • 5 authors
·
Feb 13, 2024 1

Intuitive Fine-Tuning: Towards Unifying SFT and RLHF into a Single Process

Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) are two fundamental processes for enhancing the capabilities of Language Models (LMs) post pre-training, aligning them better with human preferences. Although SFT advances in training efficiency, RLHF delivers better alignment, thus they are often combined. However, common practices simply apply them sequentially without unifying their optimization targets, resulting in a trade-off between fitting different objectives, and ignoring the opportunities to bridge the paradigm gap and take the strength from both. To obtain a unified understanding, we interpret SFT and RLHF using two sub-processes -- Preference Estimation and Transition Optimization -- defined at token level within the Markov Decision Process (MDP) framework. This modeling shows that SFT is only a specialized case of RLHF with inferior estimation and optimization. RLHF evaluates the quality of model's entire generated answer, whereas SFT only scores predicted tokens based on preceding tokens from target answers. Therefore, SFT overestimates the ability of model, leading to inferior optimization. Building on this view, we introduce Intuitive Fine-tuning (IFT) to integrate SFT and RLHF into a single process. IFT captures LMs' intuitive sense of the entire answers through a temporal residual connection, while using a single policy and the same volume of non-preference-labeled data as SFT. Our experiments show that IFT performs comparably or even superiorly to sequential recipes of SFT and some typical alignment methods across several tasks, particularly those requires generation, reasoning, and fact-following abilities. An explainable Frozen Lake game further validates the effectiveness of IFT.

  • 8 authors
·
May 20, 2024

Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective

Large language models are being widely used across industries to generate content that contributes directly to key performance metrics, such as conversion rates. Pretrained models, however, often fall short when it comes to aligning with human preferences or optimizing for business objectives. As a result, fine-tuning with good-quality labeled data is essential to guide models to generate content that achieves better results. Controlled experiments, like A/B tests, can provide such data, but they are often expensive and come with significant engineering and logistical challenges. Meanwhile, companies have access to a vast amount of historical (observational) data that remains underutilized. In this work, we study the challenges and opportunities of fine-tuning LLMs using observational data. We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations. We present empirical evidence of this issue using various real-world datasets and propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals. Using simulation experiments, we demonstrate that DeconfoundLM improves the recovery of causal relationships and mitigates failure modes found in fine-tuning methods that ignore or naively incorporate confounding variables. Our findings highlight that while observational data presents risks, with the right causal corrections, it can be a powerful source of signal for LLM alignment. Please refer to the project page for code and related resources.

  • 1 authors
·
May 30

SALMON: Self-Alignment with Principle-Following Reward Models

Supervised Fine-Tuning (SFT) on response demonstrations combined with Reinforcement Learning from Human Feedback (RLHF) constitutes a powerful paradigm for aligning LLM-based AI agents. However, a significant limitation of such an approach is its dependency on high-quality human annotations, making its application to intricate tasks challenging due to difficulties in obtaining consistent response demonstrations and in-distribution response preferences. This paper presents a novel approach, namely SALMON (Self-ALignMent with principle-fOllowiNg reward models), to align base language models with minimal human supervision, using only a small set of human-defined principles, yet achieving superior performance. Central to our approach is a principle-following reward model. Trained on synthetic preference data, this model can generate reward scores based on arbitrary human-defined principles. By merely adjusting these principles during the RL training phase, we gain full control over the preferences with the reward model, subsequently influencing the behavior of the RL-trained policies, and eliminating the reliance on the collection of online human preferences. Applying our method to the LLaMA-2-70b base language model, we developed an AI assistant named Dromedary-2. With only 6 exemplars for in-context learning and 31 human-defined principles, Dromedary-2 significantly surpasses the performance of several state-of-the-art AI systems, including LLaMA-2-Chat-70b, on various benchmark datasets. We have open-sourced the code and model weights to encourage further research into aligning LLM-based AI agents with enhanced supervision efficiency, improved controllability, and scalable oversight.

  • 8 authors
·
Oct 9, 2023

Improving Large Language Model Fine-tuning for Solving Math Problems

Despite their success in many natural language tasks, solving math problems remains a significant challenge for large language models (LLMs). A large gap exists between LLMs' pass-at-one and pass-at-N performance in solving math problems, suggesting LLMs might be close to finding correct solutions, motivating our exploration of fine-tuning methods to unlock LLMs' performance. Using the challenging MATH dataset, we investigate three fine-tuning strategies: (1) solution fine-tuning, where we fine-tune to generate a detailed solution for a given math problem; (2) solution-cluster re-ranking, where the LLM is fine-tuned as a solution verifier/evaluator to choose among generated candidate solution clusters; (3) multi-task sequential fine-tuning, which integrates both solution generation and evaluation tasks together efficiently to enhance the LLM performance. With these methods, we present a thorough empirical study on a series of PaLM 2 models and find: (1) The quality and style of the step-by-step solutions used for fine-tuning can make a significant impact on the model performance; (2) While solution re-ranking and majority voting are both effective for improving the model performance when used separately, they can also be used together for an even greater performance boost; (3) Multi-task fine-tuning that sequentially separates the solution generation and evaluation tasks can offer improved performance compared with the solution fine-tuning baseline. Guided by these insights, we design a fine-tuning recipe that yields approximately 58.8% accuracy on the MATH dataset with fine-tuned PaLM 2-L models, an 11.2% accuracy improvement over the few-shot performance of pre-trained PaLM 2-L model with majority voting.

  • 5 authors
·
Oct 16, 2023 1

CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning

Vision-Language-Action (VLA) models demonstrate significant potential for developing generalized policies in real-world robotic control. This progress inspires researchers to explore fine-tuning these models with Reinforcement Learning (RL). However, fine-tuning VLA models with RL still faces challenges related to sample efficiency, compatibility with action chunking, and training stability. To address these challenges, we explore the fine-tuning of VLA models through offline reinforcement learning incorporating action chunking. In this work, we propose Chunked RL, a novel reinforcement learning framework specifically designed for VLA models. Within this framework, we extend temporal difference (TD) learning to incorporate action chunking, a prominent characteristic of VLA models. Building upon this framework, we propose CO-RFT, an algorithm aimed at fine-tuning VLA models using a limited set of demonstrations (30 to 60 samples). Specifically, we first conduct imitation learning (IL) with full parameter fine-tuning to initialize both the backbone and the policy. Subsequently, we implement offline RL with action chunking to optimize the pretrained policy. Our empirical results in real-world environments demonstrate that CO-RFT outperforms previous supervised methods, achieving a 57% improvement in success rate and a 22.3% reduction in cycle time. Moreover, our method exhibits robust positional generalization capabilities, attaining a success rate of 44.3% in previously unseen positions.

  • 6 authors
·
Aug 4

Understanding the Effects of RLHF on LLM Generalisation and Diversity

Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT, Anthropic's Claude, or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e. supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the trade-off between generalisation and diversity.

  • 7 authors
·
Oct 10, 2023

Learning to Modulate pre-trained Models in RL

Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting, that is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks.

  • 5 authors
·
Jun 26, 2023

Health Text Simplification: An Annotated Corpus for Digestive Cancer Education and Novel Strategies for Reinforcement Learning

Objective: The reading level of health educational materials significantly influences the understandability and accessibility of the information, particularly for minoritized populations. Many patient educational resources surpass the reading level and complexity of widely accepted standards. There is a critical need for high-performing text simplification models in health information to enhance dissemination and literacy. This need is particularly acute in cancer education, where effective prevention and screening education can substantially reduce morbidity and mortality. Methods: We introduce Simplified Digestive Cancer (SimpleDC), a parallel corpus of cancer education materials tailored for health text simplification research, comprising educational content from the American Cancer Society, Centers for Disease Control and Prevention, and National Cancer Institute. Utilizing SimpleDC alongside the existing Med-EASi corpus, we explore Large Language Model (LLM)-based simplification methods, including fine-tuning, reinforcement learning (RL), reinforcement learning with human feedback (RLHF), domain adaptation, and prompt-based approaches. Our experimentation encompasses Llama 2 and GPT-4. A novel RLHF reward function is introduced, featuring a lightweight model adept at distinguishing between original and simplified texts, thereby enhancing the model's effectiveness with unlabeled data. Results: Fine-tuned Llama 2 models demonstrated high performance across various metrics. Our innovative RLHF reward function surpassed existing RL text simplification reward functions in effectiveness. The results underscore that RL/RLHF can augment fine-tuning, facilitating model training on unlabeled text and improving performance.

  • 6 authors
·
Jan 26, 2024

A Technical Survey of Reinforcement Learning Techniques for Large Language Models

Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs), addressing critical challenges in instruction following, ethical alignment, and reasoning capabilities. This survey offers a comprehensive foundation on the integration of RL with language models, highlighting prominent algorithms such as Proximal Policy Optimization (PPO), Q-Learning, and Actor-Critic methods. Additionally, it provides an extensive technical overview of RL techniques specifically tailored for LLMs, including foundational methods like Reinforcement Learning from Human Feedback (RLHF) and AI Feedback (RLAIF), as well as advanced strategies such as Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO). We systematically analyze their applications across domains, i.e., from code generation to tool-augmented reasoning. We also present a comparative taxonomy based on reward modeling, feedback mechanisms, and optimization strategies. Our evaluation highlights key trends. RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning. However, persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation. We further discuss emerging directions, including hybrid RL algorithms, verifier-guided training, and multi-objective alignment frameworks. This survey serves as a roadmap for researchers advancing RL-driven LLM development, balancing capability enhancement with safety and scalability.

  • 2 authors
·
Jul 5

Breaking the SFT Plateau: Multimodal Structured Reinforcement Learning for Chart-to-Code Generation

While reinforcement learning (RL) has proven highly effective for general reasoning in vision-language models, its application to tasks requiring in-depth understanding of information-rich images and generation of structured outputs remains underexplored. Chart-to-code generation exemplifies this challenge, demanding complex reasoning over visual charts to generate structured code. Supervised fine-tuning (SFT) alone is often insufficient, highlighting the need for effective RL strategies that appropriately reward structured outputs. We systematically investigate the performance plateau in SFT through large-scale experiments and propose Multimodal Structured Reinforcement Learning (MSRL) for chart-to-code generation, which substantially breaks through this plateau. We construct the largest training corpus to date, containing 3 million chart-code pairs from real-world arXiv tables to mitigate simplistic patterns of prior synthetic data. Despite reaching state-of-the-art performance, our experiments show that scaling SFT data eventually hits a plateau where further increases yield negligible improvements. Our MSRL method leverages a multi-granularity structured reward system using multimodal textual and visual feedback. At the textual level, rule-based rewards validate fine-grained code details. At the visual level, model-based rewards assess structural similarity by rendering generated code into images and employing an evaluator model. We implement this within a two-stage curriculum for training stability. Results demonstrate that MSRL significantly breaks the SFT plateau, improving high-level metrics by 6.2% and 9.9% on ChartMimic and ReachQA benchmarks respectively, achieving competitive performance with advanced closed-source models.

  • 7 authors
·
Aug 19

TuCo: Measuring the Contribution of Fine-Tuning to Individual Responses of LLMs

Past work has studied the effects of fine-tuning on large language models' (LLMs) overall performance on certain tasks. However, a quantitative and systematic method for analyzing its effect on individual outputs is still lacking. Here, we propose a new method for measuring the contribution that fine-tuning makes to individual LLM responses, assuming access to the original pre-trained model. Our method tracks the model's intermediate hidden states, providing a more fine-grained insight into the effects of fine-tuning than a simple comparison of final outputs from pre-trained and fine-tuned models. We introduce and theoretically analyze an exact decomposition of any fine-tuned LLM into a pre-training component and a fine-tuning component. Empirically, we find that model behavior and performance can be steered by up- or down-scaling the fine-tuning component during the forward pass. Motivated by this finding and our theoretical analysis, we define the Tuning Contribution (TuCo) as the ratio of the magnitudes of the fine-tuning component to the pre-training component. We observe that three prominent adversarial attacks on LLMs circumvent safety measures in a way that reduces TuCo, and that TuCo is consistently lower on prompts where these attacks succeed compared to those where they do not. This suggests that attenuating the effect of fine-tuning on model outputs plays a role in the success of such attacks. In summary, TuCo enables the quantitative study of how fine-tuning influences model behavior and safety, and vice versa.

  • 3 authors
·
Jun 29

Training Language Models to Self-Correct via Reinforcement Learning

Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffective in modern LLMs. Existing approaches for training self-correction either require multiple models or rely on a more capable model or other forms of supervision. To this end, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model's own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.

  • 18 authors
·
Sep 19, 2024 9

Improving Language Models with Advantage-based Offline Policy Gradients

Abstract Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. https://github.com/abaheti95/LoL-RL

  • 6 authors
·
May 24, 2023 2

Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data

Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.

  • 9 authors
·
Apr 22, 2024

Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion

Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.

  • 10 authors
·
Jun 27, 2024

LIFT the Veil for the Truth: Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning

Recent studies have shown that supervised fine-tuning of LLMs on a small number of high-quality datasets can yield strong reasoning capabilities. However, full fine-tuning (Full FT), while powerful, is computationally expensive and susceptible to overfitting and catastrophic forgetting, particularly when data is limited. Sparse fine-tuning, which previously achieved notable success by updating only a small subset of model parameters, offers a promising trade-off between efficiency and effectiveness. Yet, it has lagged behind in the LLM era due to the difficulty of identifying parameters truly critical for reasoning. In this work, we state that weights with the largest magnitude after low-rank approximation are critical weights for fine-tuning, which we call Principal Weights. Surprisingly, while magnitude-based sparse fine-tuning performs poorly as a baseline on LLM fine-tuning, it becomes highly effective after rank reduction. These insights motivate our method: Low-rank Informed Sparse Fine-Tuning (LIFT). LIFT only updates the top 5% Principal Weights throughout training and consistently achieves better performance on reasoning tasks than Full FT, while maintaining memory efficiency on par with popular parameter-efficient fine-tuning methods. In addition to strong performance on target domains such as arithmetic reasoning, LIFT also retains up to 20% more source-domain knowledge, compared to Full FT and LoRA. Our code is available at: https://github.com/zihanghliu/LIFT.

  • 8 authors
·
May 31 2

FineTuneBench: How well do commercial fine-tuning APIs infuse knowledge into LLMs?

There is great interest in fine-tuning frontier large language models (LLMs) to inject new information and update existing knowledge. While commercial LLM fine-tuning APIs from providers such as OpenAI and Google promise flexible adaptation for various applications, the efficacy of fine-tuning remains unclear. In this study, we introduce FineTuneBench, an evaluation framework and dataset for understanding how well commercial fine-tuning APIs can successfully learn new and updated knowledge. We analyze five frontier LLMs with commercially available fine-tuning APIs, including GPT-4o and Gemini 1.5 Pro, on their effectiveness in two settings: (1) ingesting novel information, such as recent news events and new people profiles, and (2) updating existing knowledge, such as updated medical guidelines and code frameworks. Our results reveal substantial shortcomings in all the models' abilities to effectively learn new information through fine-tuning, with an average generalization accuracy of 37% across all models. When updating existing knowledge, such as incorporating medical guideline updates, commercial fine-tuning APIs show even more limited capability (average generalization accuracy of 19%). Overall, fine-tuning GPT-4o mini is the most effective for infusing new knowledge and updating knowledge, followed by GPT-3.5 Turbo and GPT-4o. The fine-tuning APIs for Gemini 1.5 Flesh and Gemini 1.5 Pro are unable to learn new knowledge or update existing knowledge. These findings underscore a major shortcoming in using current commercial fine-tuning services to achieve reliable knowledge infusion in common scenarios. We open source the FineTuneBench dataset at https://github.com/kevinwu23/StanfordFineTuneBench.

  • 3 authors
·
Nov 7, 2024

Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization

A single language model (LM), despite aligning well with an average labeler through reinforcement learning from human feedback (RLHF), may not universally suit diverse human preferences. Recent approaches therefore opt for customization by collecting multi-dimensional feedback and creating distinct reward models (RMs) for each dimension (e.g., helpfulness, harmlessness, or honesty). Different LMs can then be optimized for different preferences using multi-objective RLHF (MORLHF) with different reward weightings. Yet, RL fine-tuning is unstable and resource-heavy, especially for MORLHF with diverse and usually conflicting objectives. In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free algorithm that extends Direct Preference Optimization (DPO) for multiple alignment objectives with minimal overheads. Essentially, MODPO folds language modeling directly into reward modeling, training LMs as implicit collective reward models (cRMs) that combine all objectives with specific weightings. While theoretically guaranteed to produce the same optimal solutions as MORLHF, MODPO is practically more stable and computationally efficient. Empirical results from safety alignment and long-form question answering confirm that MODPO matches or outperforms existing methods, consistently producing a Pareto front of LMs that cater to diverse preferences with 3 times less computational resources compared to MORLHF.

  • 8 authors
·
Oct 5, 2023

RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold

Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by 8 times. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone.

  • 6 authors
·
Jun 20, 2024

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9 5

Visual-RFT: Visual Reinforcement Fine-Tuning

Reinforcement Fine-Tuning (RFT) in Large Reasoning Models like OpenAI o1 learns from feedback on its answers, which is especially useful in applications when fine-tuning data is scarce. Recent open-source work like DeepSeek-R1 demonstrates that reinforcement learning with verifiable reward is one key direction in reproducing o1. While the R1-style model has demonstrated success in language models, its application in multi-modal domains remains under-explored. This work introduces Visual Reinforcement Fine-Tuning (Visual-RFT), which further extends the application areas of RFT on visual tasks. Specifically, Visual-RFT first uses Large Vision-Language Models (LVLMs) to generate multiple responses containing reasoning tokens and final answers for each input, and then uses our proposed visual perception verifiable reward functions to update the model via the policy optimization algorithm such as Group Relative Policy Optimization (GRPO). We design different verifiable reward functions for different perception tasks, such as the Intersection over Union (IoU) reward for object detection. Experimental results on fine-grained image classification, few-shot object detection, reasoning grounding, as well as open-vocabulary object detection benchmarks show the competitive performance and advanced generalization ability of Visual-RFT compared with Supervised Fine-tuning (SFT). For example, Visual-RFT improves accuracy by 24.3% over the baseline in one-shot fine-grained image classification with around 100 samples. In few-shot object detection, Visual-RFT also exceeds the baseline by 21.9 on COCO's two-shot setting and 15.4 on LVIS. Our Visual-RFT represents a paradigm shift in fine-tuning LVLMs, offering a data-efficient, reward-driven approach that enhances reasoning and adaptability for domain-specific tasks.

  • 8 authors
·
Mar 3 2

Learning to Generate Research Idea with Dynamic Control

The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.

  • 5 authors
·
Dec 19, 2024

The Path Not Taken: RLVR Provably Learns Off the Principals

Reinforcement Learning with Verifiable Rewards (RLVR) reliably improves the reasoning performance of large language models, yet it appears to modify only a small fraction of parameters. We revisit this paradox and show that sparsity is a surface artifact of a model-conditioned optimization bias: for a fixed pretrained model, updates consistently localize to preferred parameter regions, highly consistent across runs and largely invariant to datasets and RL recipes. We mechanistically explain these dynamics with a Three-Gate Theory: Gate I (KL Anchor) imposes a KL-constrained update; Gate II (Model Geometry) steers the step off principal directions into low-curvature, spectrum-preserving subspaces; and Gate III (Precision) hides micro-updates in non-preferred regions, making the off-principal bias appear as sparsity. We then validate this theory and, for the first time, provide a parameter-level characterization of RLVR's learning dynamics: RLVR learns off principal directions in weight space, achieving gains via minimal spectral drift, reduced principal-subspace rotation, and off-principal update alignment. In contrast, SFT targets principal weights, distorts the spectrum, and even lags RLVR. Together, these results provide the first parameter-space account of RLVR's training dynamics, revealing clear regularities in how parameters evolve. Crucially, we show that RL operates in a distinct optimization regime from SFT, so directly adapting SFT-era parameter-efficient fine-tuning (PEFT) methods can be flawed, as evidenced by our case studies on advanced sparse fine-tuning and LoRA variants. We hope this work charts a path toward a white-box understanding of RLVR and the design of geometry-aware, RLVR-native learning algorithms, rather than repurposed SFT-era heuristics.

facebook AI at Meta
·
Nov 11 2

Anchored Supervised Fine-Tuning

Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains.

  • 7 authors
·
Sep 28

Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning

Reinforcement learning (RL) has become the dominant paradigm for endowing language models with advanced reasoning capabilities. Despite the substantial empirical gains demonstrated by RL-based training methods like GRPO, a granular understanding of their advantages is still lacking. To address this gap, we introduce a fine-grained analytic framework to dissect the impact of RL on reasoning. Our framework specifically investigates key elements that have been hypothesized to benefit from RL training: (1) plan-following and execution, (2) problem decomposition, and (3) improved reasoning and knowledge utilization. Using this framework, we gain insights beyond mere accuracy. For instance, providing models with explicit step-by-step plans surprisingly degrades performance on the most challenging benchmarks, yet RL-tuned models exhibit greater robustness, experiencing markedly smaller performance drops than their base counterparts. This suggests that RL may not primarily enhance the execution of external plans but rather empower models to formulate and follow internal strategies better suited to their reasoning processes. Conversely, we observe that RL enhances the model's capacity to integrate provided knowledge into its reasoning process, leading to performance improvements across diverse tasks. We also study difficulty, showing improved training by developing new ways to exploit hard problems. Our findings lay a foundation for more principled training and evaluation of reasoning models.

  • 7 authors
·
Jun 5

Imitating Language via Scalable Inverse Reinforcement Learning

The majority of language model training builds on imitation learning. It covers pretraining, supervised fine-tuning, and affects the starting conditions for reinforcement learning from human feedback (RLHF). The simplicity and scalability of maximum likelihood estimation (MLE) for next token prediction led to its role as predominant paradigm. However, the broader field of imitation learning can more effectively utilize the sequential structure underlying autoregressive generation. We focus on investigating the inverse reinforcement learning (IRL) perspective to imitation, extracting rewards and directly optimizing sequences instead of individual token likelihoods and evaluate its benefits for fine-tuning large language models. We provide a new angle, reformulating inverse soft-Q-learning as a temporal difference regularized extension of MLE. This creates a principled connection between MLE and IRL and allows trading off added complexity with increased performance and diversity of generations in the supervised fine-tuning (SFT) setting. We find clear advantages for IRL-based imitation, in particular for retaining diversity while maximizing task performance, rendering IRL a strong alternative on fixed SFT datasets even without online data generation. Our analysis of IRL-extracted reward functions further indicates benefits for more robust reward functions via tighter integration of supervised and preference-based LLM post-training.

  • 16 authors
·
Sep 2, 2024

Shape it Up! Restoring LLM Safety during Finetuning

Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks.

  • 5 authors
·
May 22

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

  • 3 authors
·
Oct 31, 2023 9

MathSE: Improving Multimodal Mathematical Reasoning via Self-Evolving Iterative Reflection and Reward-Guided Fine-Tuning

Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language answering tasks. Despite their strengths, these models often encounter challenges in achieving complex reasoning tasks such as mathematical problem-solving. Previous works have focused on fine-tuning on specialized mathematical datasets. However, these datasets are typically distilled directly from teacher models, which capture only static reasoning patterns and leaving substantial gaps compared to student models. This reliance on fixed teacher-derived datasets not only restricts the model's ability to adapt to novel or more intricate questions that extend beyond the confines of the training data, but also lacks the iterative depth needed for robust generalization. To overcome these limitations, we propose \method, a Mathematical Self-Evolving framework for MLLMs. In contrast to traditional one-shot fine-tuning paradigms, \method iteratively refines the model through cycles of inference, reflection, and reward-based feedback. Specifically, we leverage iterative fine-tuning by incorporating correct reasoning paths derived from previous-stage inference and integrating reflections from a specialized Outcome Reward Model (ORM). To verify the effectiveness of \method, we evaluate it on a suite of challenging benchmarks, demonstrating significant performance gains over backbone models. Notably, our experimental results on MathVL-test surpass the leading open-source multimodal mathematical reasoning model QVQ. Our code and models are available at https://zheny2751\allowbreak-dotcom.github.io/\allowbreak MathSE.github.io/.

MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model

With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., pass@1024), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at pass@1024, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond.

  • 4 authors
·
Oct 13 2

How Does Vision-Language Adaptation Impact the Safety of Vision Language Models?

Vision-Language adaptation (VL adaptation) transforms Large Language Models (LLMs) into Large Vision-Language Models (LVLMs) for multimodal tasks, but this process often compromises the inherent safety capabilities embedded in the original LLMs. Despite potential harmfulness due to weakened safety measures, in-depth analysis on the effects of VL adaptation on safety remains under-explored. This study examines how VL adaptation influences safety and evaluates the impact of safety fine-tuning methods. Our analysis reveals that safety degradation occurs during VL adaptation, even when the training data is safe. While safety tuning techniques like supervised fine-tuning with safety datasets or reinforcement learning from human feedback mitigate some risks, they still lead to safety degradation and a reduction in helpfulness due to over-rejection issues. Further analysis of internal model weights suggests that VL adaptation may impact certain safety-related layers, potentially lowering overall safety levels. Additionally, our findings demonstrate that the objectives of VL adaptation and safety tuning are divergent, which often results in their simultaneous application being suboptimal. To address this, we suggest the weight merging approach as an optimal solution effectively reducing safety degradation while maintaining helpfulness. These insights help guide the development of more reliable and secure LVLMs for real-world applications.

  • 7 authors
·
Oct 9, 2024

Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models

Vision-language models (VLMs) have advanced reasoning in natural scenes, but their role in medical imaging remains underexplored. Medical reasoning tasks demand robust image analysis and well-justified answers, posing challenges due to the complexity of medical images. Transparency and trustworthiness are essential for clinical adoption and regulatory compliance. We introduce Med-R1, a framework exploring reinforcement learning (RL) to enhance VLMs' generalizability and trustworthiness in medical reasoning. Leveraging the DeepSeek strategy, we employ Group Relative Policy Optimization (GRPO) to guide reasoning paths via reward signals. Unlike supervised fine-tuning (SFT), which often overfits and lacks generalization, RL fosters robust and diverse reasoning. Med-R1 is evaluated across eight medical imaging modalities: CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray Imaging. Compared to its base model, Qwen2-VL-2B, Med-R1 achieves a 29.94% accuracy improvement and outperforms Qwen2-VL-72B, which has 36 times more parameters. Testing across five question types-modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis Med-R1 demonstrates superior generalization, exceeding Qwen2-VL-2B by 32.06% and surpassing Qwen2-VL-72B in question-type generalization. These findings show that RL improves medical reasoning and enables parameter-efficient models to outperform significantly larger ones. With interpretable reasoning outputs, Med-R1 represents a promising step toward generalizable, trustworthy, and clinically viable medical VLMs.

  • 5 authors
·
Mar 18

Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training

Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over 4% compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.

RL for Consistency Models: Faster Reward Guided Text-to-Image Generation

Reinforcement learning (RL) has improved guided image generation with diffusion models by directly optimizing rewards that capture image quality, aesthetics, and instruction following capabilities. However, the resulting generative policies inherit the same iterative sampling process of diffusion models that causes slow generation. To overcome this limitation, consistency models proposed learning a new class of generative models that directly map noise to data, resulting in a model that can generate an image in as few as one sampling iteration. In this work, to optimize text-to-image generative models for task specific rewards and enable fast training and inference, we propose a framework for fine-tuning consistency models via RL. Our framework, called Reinforcement Learning for Consistency Model (RLCM), frames the iterative inference process of a consistency model as an RL procedure. RLCM improves upon RL fine-tuned diffusion models on text-to-image generation capabilities and trades computation during inference time for sample quality. Experimentally, we show that RLCM can adapt text-to-image consistency models to objectives that are challenging to express with prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Comparing to RL finetuned diffusion models, RLCM trains significantly faster, improves the quality of the generation measured under the reward objectives, and speeds up the inference procedure by generating high quality images with as few as two inference steps. Our code is available at https://rlcm.owenoertell.com

  • 5 authors
·
Mar 25, 2024 3

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

  • 9 authors
·
Oct 19, 2024

Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards

Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).

  • 8 authors
·
Feb 28, 2024

Recursive Introspection: Teaching Language Model Agents How to Self-Improve

A central piece in enabling intelligent agentic behavior in foundation models is to make them capable of introspecting upon their behavior, reasoning, and correcting their mistakes as more computation or interaction is available. Even the strongest proprietary large language models (LLMs) do not quite exhibit the ability of continually improving their responses sequentially, even in scenarios where they are explicitly told that they are making a mistake. In this paper, we develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to introduce this capability, despite prior work hypothesizing that this capability may not be possible to attain. Our approach prescribes an iterative fine-tuning procedure, which attempts to teach the model how to alter its response after having executed previously unsuccessful attempts to solve a hard test-time problem, with optionally additional environment feedback. RISE poses fine-tuning for a single-turn prompt as solving a multi-turn Markov decision process (MDP), where the initial state is the prompt. Inspired by principles in online imitation learning and reinforcement learning, we propose strategies for multi-turn data collection and training so as to imbue an LLM with the capability to recursively detect and correct its previous mistakes in subsequent iterations. Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks, outperforming several single-turn strategies given an equal amount of inference-time computation. We also find that RISE scales well, often attaining larger benefits with more capable models. Our analysis shows that RISE makes meaningful improvements to responses to arrive at the correct solution for challenging prompts, without disrupting one-turn abilities as a result of expressing more complex distributions.

  • 4 authors
·
Jul 25, 2024