new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Keyword-driven Retrieval-Augmented Large Language Models for Cold-start User Recommendations

Recent advancements in Large Language Models (LLMs) have shown significant potential in enhancing recommender systems. However, addressing the cold-start recommendation problem, where users lack historical data, remains a considerable challenge. In this paper, we introduce KALM4Rec (Keyword-driven Retrieval-Augmented Large Language Models for Cold-start User Recommendations), a novel framework specifically designed to tackle this problem by requiring only a few input keywords from users in a practical scenario of cold-start user restaurant recommendations. KALM4Rec operates in two main stages: candidates retrieval and LLM-based candidates re-ranking. In the first stage, keyword-driven retrieval models are used to identify potential candidates, addressing LLMs' limitations in processing extensive tokens and reducing the risk of generating misleading information. In the second stage, we employ LLMs with various prompting strategies, including zero-shot and few-shot techniques, to re-rank these candidates by integrating multiple examples directly into the LLM prompts. Our evaluation, using a Yelp restaurant dataset with user reviews from three English-speaking cities, shows that our proposed framework significantly improves recommendation quality. Specifically, the integration of in-context instructions with LLMs for re-ranking markedly enhances the performance of the cold-start user recommender system.

  • 4 authors
·
May 29, 2024

Exploring the Impact of Temperature on Large Language Models:Hot or Cold?

The sampling temperature, a critical hyperparameter in large language models (LLMs), modifies the logits before the softmax layer, thereby reshaping the distribution of output tokens. Recent studies have challenged the Stochastic Parrots analogy by demonstrating that LLMs are capable of understanding semantics rather than merely memorizing data and that randomness, modulated by sampling temperature, plays a crucial role in model inference. In this study, we systematically evaluated the impact of temperature in the range of 0 to 2 on data sets designed to assess six different capabilities, conducting statistical analyses on open source models of three different sizes: small (1B--4B), medium (6B--13B), and large (40B--80B). Our findings reveal distinct skill-specific effects of temperature on model performance, highlighting the complexity of optimal temperature selection in practical applications. To address this challenge, we propose a BERT-based temperature selector that takes advantage of these observed effects to identify the optimal temperature for a given prompt. We demonstrate that this approach can significantly improve the performance of small and medium models in the SuperGLUE datasets. Furthermore, our study extends to FP16 precision inference, revealing that temperature effects are consistent with those observed in 4-bit quantized models. By evaluating temperature effects up to 4.0 in three quantized models, we find that the Mutation Temperature -- the point at which significant performance changes occur -- increases with model size.

  • 5 authors
·
Jun 8, 2025