Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSANSformers: Self-Supervised Forecasting in Electronic Health Records with Attention-Free Models
Despite the proven effectiveness of Transformer neural networks across multiple domains, their performance with Electronic Health Records (EHR) can be nuanced. The unique, multidimensional sequential nature of EHR data can sometimes make even simple linear models with carefully engineered features more competitive. Thus, the advantages of Transformers, such as efficient transfer learning and improved scalability are not always fully exploited in EHR applications. Addressing these challenges, we introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data. In this work, we aim to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities. The challenge amplifies when dealing with divergent patient subgroups, like those with rare diseases, which are characterized by unique health trajectories and are typically smaller in size. To address this, we employ a self-supervised pretraining strategy, Generative Summary Pretraining (GSP), which predicts future summary statistics based on past health records of a patient. Our models are pretrained on a health registry of nearly one million patients, then fine-tuned for specific subgroup prediction tasks, showcasing the potential to handle the multifaceted nature of EHR data. In evaluation, SANSformer consistently surpasses robust EHR baselines, with our GSP pretraining method notably amplifying model performance, particularly within smaller patient subgroups. Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
SynthCloner: Synthesizer Preset Conversion via Factorized Codec with ADSR Envelope Control
Electronic synthesizer sounds are controlled by presets, parameters settings that yield complex timbral characteristics and ADSR envelopes, making preset conversion particularly challenging. Recent approaches to timbre transfer often rely on spectral objectives or implicit style matching, offering limited control over envelope shaping. Moreover, public synthesizer datasets rarely provide diverse coverage of timbres and ADSR envelopes. To address these gaps, we present SynthCloner, a factorized codec model that disentangles audio into three attributes: ADSR envelope, timbre, and content. This separation enables expressive synthesizer preset conversion with independent control over these three attributes. Additionally, we introduce SynthCAT, a new synthesizer dataset with a task-specific rendering pipeline covering 250 timbres, 120 ADSR envelopes, and 100 MIDI sequences. Experiments show that SynthCloner outperforms baselines on both objective and subjective metrics, while enabling independent attribute control. The code, model checkpoint, and audio examples are available at https://buffett0323.github.io/synthcloner/.
Enriching Unsupervised User Embedding via Medical Concepts
Clinical notes in Electronic Health Records (EHR) present rich documented information of patients to inference phenotype for disease diagnosis and study patient characteristics for cohort selection. Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions. Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories. However, existing unsupervised approaches of user embeddings from clinical notes do not explicitly incorporate medical concepts. In this study, we propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora, MIMIC-III and Diabetes. We evaluate user embeddings on both extrinsic and intrinsic tasks, including phenotype classification, in-hospital mortality prediction, patient retrieval, and patient relatedness. Experiments on the two clinical corpora show our approach exceeds unsupervised baselines, and incorporating medical concepts can significantly improve the baseline performance.
A Natural Language Processing Pipeline of Chinese Free-text Radiology Reports for Liver Cancer Diagnosis
Despite the rapid development of natural language processing (NLP) implementation in electronic medical records (EMRs), Chinese EMRs processing remains challenging due to the limited corpus and specific grammatical characteristics, especially for radiology reports. In this study, we designed an NLP pipeline for the direct extraction of clinically relevant features from Chinese radiology reports, which is the first key step in computer-aided radiologic diagnosis. The pipeline was comprised of named entity recognition, synonyms normalization, and relationship extraction to finally derive the radiological features composed of one or more terms. In named entity recognition, we incorporated lexicon into deep learning model bidirectional long short-term memory-conditional random field (BiLSTM-CRF), and the model finally achieved an F1 score of 93.00%. With the extracted radiological features, least absolute shrinkage and selection operator and machine learning methods (support vector machine, random forest, decision tree, and logistic regression) were used to build the classifiers for liver cancer prediction. For liver cancer diagnosis, random forest had the highest predictive performance in liver cancer diagnosis (F1 score 86.97%, precision 87.71%, and recall 86.25%). This work was a comprehensive NLP study focusing on Chinese radiology reports and the application of NLP in cancer risk prediction. The proposed NLP pipeline for the radiological feature extraction could be easily implemented in other kinds of Chinese clinical texts and other disease predictive tasks.
Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons
Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
A simple model for strange metallic behavior
A refined semi-holographic non-Fermi liquid model, in which carrier electrons hybridize with operators of a holographic critical sector, has been proposed recently for strange metallic behavior. The model, consistently with effective theory approach, has two couplings whose ratio is related to the doping. We explain the origin of the linear-in-T resistivity and strange metallic behavior as a consequence of the emergence of a universal form of the spectral function which is independent of the model parameters when the ratio of the two couplings take optimal values determined only by the critical exponent. This universal form fits well with photoemission data of copper oxide samples for under/optimal/over-doping with a fixed exponent over a wide range of temperatures. We further obtain a refined Planckian dissipation scenario in which the scattering time τ= f cdot hbar /(k_B T), with f being O(1) at strong coupling, but O(10) at weak coupling.
Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {Haldane bundle dataset}, which consists of synthetically generated complex line bundles on the 2-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.
Potential and Limitation of High-Frequency Cores and Caches
This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.
Using Machine Learning for Anomaly Detection on a System-on-Chip under Gamma Radiation
The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) effects often cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of the FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class Support Vector Machine with Radial Basis Function Kernel has an average Recall score of 0.95. Also, all anomalies can be detected before the boards stop working.
Notes on Properties of Holographic Strange Metals
We investigate properties of holographic strange metals in p+2-dimensions, generalizing the analysis performed in arXiv:0912.1061. The bulk spacetime is p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density, the heat capacity as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief.
Shubnikov-de Haas Oscillations in 2D PtSe_2: A fermiological Charge Carrier Investigation
High magnetic field and low temperature transport is carried out in order to characterize the charge carriers of PtSe_2. In particular, the Shubnikov-de Haas oscillations arising at applied magnetic field strengths gtrsim 4.5,T are found to occur exclusively in plane and emerge at a layer thickness of approx 18,nm, increasing in amplitude and decreasing in frequency for thinner PtSe_2 flakes. Moreover, the quantum transport time, Berry phase, Dingle temperature and cyclotron mass of the charge carriers are ascertained. The emergence of weak antilocalization (WAL) lies in contrast to the presence of magnetic moments from Pt vacancies. An explanation is provided on how WAL and the Kondo effect can be observed within the same material. Detailed information about the charge carriers and transport phenomena in PtSe_2 is obtained, which is relevant for the design of prospective spintronic and orbitronic devices and for the realization of orbital Hall effect-based architectures.
A machine learning route between band mapping and band structure
Electronic band structure (BS) and crystal structure are the two complementary identifiers of solid state materials. While convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting quasiparticle dispersion (closely related to BS) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning
Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.
A low-cost ultraviolet-to-infrared absolute quantum efficiency characterization system of detectors
We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source,a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup.
Unconventional Electromechanical Response in Ferrocene Assisted Gold Atomic Chain
Atomically thin metallic chains serve as pivotal systems for studying quantum transport, with their conductance strongly linked to the orbital picture. Here, we report a non-monotonic electro-mechanical response in a gold-ferrocene junction, characterized by an unexpected conductance increase over a factor of ten upon stretching. This response is detected in the formation of ferrocene-assisted atomic gold chain in a mechanically controllable break junction at a cryogenic temperature. DFT based calculations show that tilting of molecules inside the chain modifies the orbital overlap and the transmission spectra, leading to such non-monotonic conductance evolution with stretching. This behavior, unlike typical flat conductance plateaus observed in metal atomic chains, pinpoints the unique role of conformational rearrangements during chain elongation. Our findings provide a deeper understanding of the role of orbital hybridization in transport properties and offer new opportunities for designing nanoscale devices with tailored electro-mechanical characteristics.
Disentangling lattice and electronic contributions to the metal-insulator transition from bulk vs. layer confined RNiO_3
In complex oxide materials, changes in electronic properties are often associated with changes in crystal structure, raising the question of the relative roles of the electronic and lattice effects in driving the metal-insulator transition. This paper presents a combined theoretical and experimental analysis of the dependence of the metal-insulator transition of NdNiO_3 on crystal structure, specifically comparing properties of bulk materials to one and two layer samples of NdNiO_3 grown between multiple electronically inert NdAlO_3 counterlayers in a superlattice. The comparison amplifies and validates a theoretical approach developed in previous papers and disentangles the electronic and lattice contributions, through an independent variation of each. In bulk NdNiO_3 the correlations are not strong enough to drive a metal-insulator transition by themselves: a lattice distortion is required. Ultra-thin films exhibit two additional electronic effects and one lattice-related effect. The electronic effects are quantum confinement, leading to dimensional reduction of the electronic Hamiltonian, and an increase in electronic bandwidth due to counterlayer induced bond angle changes. We find that the confinement effect is much more important. The lattice effect is an increase in stiffness due to the cost of propagation of the lattice disproportionation into the confining material.
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
Electronic properties, correlated topology and Green's function zeros
There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.
Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.
ChangeChip: A Reference-Based Unsupervised Change Detection for PCB Defect Detection
The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.
Strange Metallic Behavior in Anisotropic Background
We continue our analysis on conductivity in the anisotropic background by employing the D-brane probe technique, where the D-branes play the role of charge carriers. The DC and AC conductivity for massless charge carriers are obtained analytically, while interesting curves for the AC conductivity are also plotted. For massive charge carriers, we calculate the DC and AC conductivities in the dilute limit and we fix the parameters in the Einstein-Maxwell-dilaton theory so that the background exhibits the same scaling behaviors as those for real-world strange metals. The DC conductivity at finite density is also computed.
D2S-FLOW: Automated Parameter Extraction from Datasheets for SPICE Model Generation Using Large Language Models
In electronic design, engineers often manually search through extensive documents to retrieve component parameters required for constructing SPICE models, a process that is both labor-intensive and time-consuming. To address this challenge, we present an automated framework called D2S-FLOW that leverages large language models (LLMs) to extract electrical parameters from datasheets and generate SPICE models with high precision and efficiency, significantly reducing the need for manual intervention. Unlike traditional RAG systems, D2S-FLOW employs a workflow to enhance precision in handling unstructured documents and inconsistent naming conventions through three innovative mechanisms: Attention-Guided Document Focusing (AGDF), Hierarchical Document-Enhanced Retrieval (HDER), and Heterogeneous Named Entity Normalization (HNEN). AGDF narrows retrieval to user-selected documents, HDER utilizes document structure for precise parameter localization, and HNEN standardizes terminology via semantic inference. Experimental results demonstrate that the framework achieves an Exact Match (EM) of 0.86, an F1 score of 0.92, and an Exact Correctness (EC) of 0.96, outperforming the strongest baseline by 19.4%, 5.7%, and 13.1%, respectively. Additionally, it reduces API token consumption by 38% and minimizes the irrelevant information ratio to 4%, showcasing substantial improvements in resource efficiency. This research provides an effective automated solution for circuit design.
MatterGen: a generative model for inorganic materials design
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.
Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs
Printed Electronics (PE) stands out as a promisingtechnology for widespread computing due to its distinct attributes, such as low costs and flexible manufacturing. Unlike traditional silicon-based technologies, PE enables stretchable, conformal,and non-toxic hardware. However, PE are constrained by larger feature sizes, making it challenging to implement complex circuits such as machine learning (ML) classifiers. Approximate computing has been proven to reduce the hardware cost of ML circuits such as Multilayer Perceptrons (MLPs). In this paper, we maximize the benefits of approximate computing by integrating hardware approximation into the MLP training process. Due to the discrete nature of hardware approximation, we propose and implement a genetic-based, approximate, hardware-aware training approach specifically designed for printed MLPs. For a 5% accuracy loss, our MLPs achieve over 5x area and power reduction compared to the baseline while outperforming state of-the-art approximate and stochastic printed MLPs.
PCB-Fire: Automated Classification and Fault Detection in PCB
Printed Circuit Boards are the foundation for the functioning of any electronic device, and therefore are an essential component for various industries such as automobile, communication, computation, etc. However, one of the challenges faced by the PCB manufacturers in the process of manufacturing of the PCBs is the faulty placement of its components including missing components. In the present scenario the infrastructure required to ensure adequate quality of the PCB requires a lot of time and effort. The authors present a novel solution for detecting missing components and classifying them in a resourceful manner. The presented algorithm focuses on pixel theory and object detection, which has been used in combination to optimize the results from the given dataset.
Zero Sound in Strange Metallic Holography
One way to model the strange metal phase of certain materials is via a holographic description in terms of probe D-branes in a Lifshitz spacetime, characterised by a dynamical exponent z. The background geometry is dual to a strongly-interacting quantum critical theory while the probe D-branes are dual to a finite density of charge carriers that can exhibit the characteristic properties of strange metals. We compute holographically the low-frequency and low-momentum form of the charge density and current retarded Green's functions in these systems for massless charge carriers. The results reveal a quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids we call zero sound. The real part of the dispersion relation depends on momentum k linearly, while the imaginary part goes as k^2/z. When z is greater than or equal to 2 the zero sound is not a well-defined quasi-particle. We also compute the frequency-dependent conductivity in arbitrary spacetime dimensions. Using that as a measure of the charge current spectral function, we find that the zero sound appears only when the spectral function consists of a single delta function at zero frequency.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
A New Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal, CaP_3
Using an evolutionary algorithm in combination with first-principles density functional theory calculations, we identify two-dimensional (2D) CaP_3 monolayer as a new Dirac semimetal due to inversion and nonsymmorphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based on light elements for their application in nanoelectronic devices and topological electronics.
Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction
Machine learning interatomic potentials (MLIPs) have become increasingly effective at approximating quantum mechanical calculations at a fraction of the computational cost. However, lower errors on held out test sets do not always translate to improved results on downstream physical property prediction tasks. In this paper, we propose testing MLIPs on their practical ability to conserve energy during molecular dynamic simulations. If passed, improved correlations are found between test errors and their performance on physical property prediction tasks. We identify choices which may lead to models failing this test, and use these observations to improve upon highly-expressive models. The resulting model, eSEN, provides state-of-the-art results on a range of physical property prediction tasks, including materials stability prediction, thermal conductivity prediction, and phonon calculations.
A molecular Ferroelectric thin film of imidazolium perchlorate on Silicon
Molecular ferroelectric materials have attracted widespread attention due to their abundant chemical diversity, structural tunability, low synthesis temperature, and high flexibility. Meanwhile, the integration of molecular ferroelectric materials and Si is still challenging, while the fundamental understanding of the ferroelectric switching process is still lacking. Herein, we have successfully synthesized the imidazole perchlorate (ImClO4) single crystals and a series of high-quality highly-oriented thin films on a Si substrate. A high inverse piezoelectric coefficient (55.7 pm/V) is demonstrated for the thin films. Two types of domain bands can be observed (in the size of a few microns): type-I band tilts ~60{\deg} with respect to the horizontal axis, while the type-II band is perpendicular to the horizontal axis. Most of the domain walls (DWs) are 180{\deg} DWs for the two bands, while some 109{\deg} DWs can also be observed. Interestingly, the DWs in type-I band are curved, charged domain walls; while the 180{\deg} DWs in type-II band are straight, noncharged domain walls. After applying +20 V for 5 s through a PFM tip, the 180{\deg} DWs in type-I band shrink first, then disconnect from the band boundary, forming a needle-like domain with a size of ~100 nm. The needle-like domain will extend toward the band boundary after an inverse bias is applied (-20 V), and expand along the band boundary after touching the boundary. Whereas for the type-II domain band, the 180{\deg} DWs are more mobile than the 109{\deg} domain walls, which displaces ~500 nm after applying +20 V. While such displacement is much shorter after the application of a negative bias for the same duration, starting from the positively poled sample. We hope to spur further interest in the on-chip design of the molecular ferroelectrics based electronic devices.
Creation of single vacancies in hBN with electron irradiation
Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.
Closed-loop Error Correction Learning Accelerates Experimental Discovery of Thermoelectric Materials
The exploration of thermoelectric materials is challenging considering the large materials space, combined with added exponential degrees of freedom coming from doping and the diversity of synthetic pathways. Here we seek to incorporate historical data and update and refine it using experimental feedback by employing error-correction learning (ECL). We thus learn from prior datasets and then adapt the model to differences in synthesis and characterization that are otherwise difficult to parameterize. We then apply this strategy to discovering thermoelectric materials where we prioritize synthesis at temperatures < 300{\deg}C. We document a previously unreported chemical family of thermoelectric materials, PbSe:SnSb, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2x that of PbSe. Our investigations show that our closed-loop experimentation strategy reduces the required number of experiments to find an optimized material by as much as 3x compared to high-throughput searches powered by state-of-the-art machine learning models. We also observe that this improvement is dependent on the accuracy of prior in a manner that exhibits diminishing returns, and after a certain accuracy is reached, it is factors associated with experimental pathways that dictate the trends.
Imaging and controlling electron motion and chemical structural dynamics of biological system in real time and space
Ultrafast electron microscopy (UEM) has found widespread applications in physics, chemistry, and materials science, enabling real-space imaging of dynamics on ultrafast timescales. Recent advances have pushed the temporal resolution of UEM into the attosecond regime, enabling the attomicroscopy technique to directly visualize electron motion. In this work, we extend the capabilities of this powerful imaging tool to investigate ultrafast electron dynamics in a biological system by imaging and controlling light induced electronic and chemical changes in the conductive network of multicellular cable bacteria. Using electron energy loss spectroscopy (EELS), we first observed a laser induced increase in {\pi}-electron density, accompanied by spectral peak broadening and a blueshift features indicative of enhanced conductivity and structural modification. We also traced the effect of ultrafast laser pumping on bulk plasmon electron oscillations by monitoring changes in the plasmon like resonance peak. Additionally, we visualized laser induced chemical structural changes in cable bacteria in real space. The imaging results revealed carbon enrichment alongside a depletion of nitrogen and oxygen, highlighting the controllability of chemical dynamics. Moreover, time resolved EELS measurements further revealed a picosecond scale decay and recovery of both {\pi}-electron and plasmonic features, attributed to electron phonon coupling. In addition to shedding light on the mechanism of electron motion in cable bacteria, these findings demonstrate ultrafast modulation and switching of conductivity, underscoring their potential as bio-optoelectronic components operating on ultrafast timescales.
Optical Properties of Superconducting K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 Single Crystals
The optical properties of the superconducting K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 single crystals with a critical temperature T_capprox 26 K have been measured in the {\it ab} plane in a wide frequency range using both infrared Fourier-transform spectroscopy and spectroscopic ellipsometry at temperatures of 4--300 K. The normal-state reflectance of K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 is analyzed using a Drude-Lorentz model with one Drude component. The temperature dependences of the plasma frequency, optical conductivity, scattering rate, and dc resistivity of the Drude contribution in the normal state are presented. In the superconducting state, we observe a signature of the superconducting gap opening at 2Δ(5~K) = 11.8~meV. An abrupt decrease in the low-frequency dielectric permittivity varepsilon _1(ω) at T < T_c also evidences the formation of the superconducting condensate. The superconducting plasma frequency ω_{pl,s} = (213pm 5)~cm^{-1} and the magnetic penetration depth λ=(7.5pm 0.2)~μm at T=5~K are determined.
Cybloids - Creation and Control of Cybernetic Colloids
Colloids play an important role in fundamental science as well as in nature and technology. They have had a strong impact on the fundamental understanding of statistical physics. For example, colloids have helped to obtain a better understanding of collective phenomena, ranging from phase transitions and glass formation to the swarming of active Brownian particles. Yet the success of colloidal systems hinges crucially on the specific physical and chemical properties of the colloidal particles, i.e. particles with the appropriate characteristics must be available. Here we present an idea to create particles with freely selectable properties. The properties might depend, for example, on the presence of other particles (hence mimicking specific pair or many-body interactions), previous configurations (hence introducing some memory or feedback), or a directional bias (hence changing the dynamics). Without directly interfering with the sample, each particle is fully controlled and can receive external commands through a predefined algorithm that can take into account any input parameters. This is realized with computer-controlled colloids, which we term cybloids - short for cybernetic colloids. The potential of cybloids is illustrated by programming a time-delayed external potential acting on a single colloid and interaction potentials for many colloids. Both an attractive harmonic potential and an annular potential are implemented. For a single particle, this programming can cause subdiffusive behavior or lend activity. For many colloids, the programmed interaction potential allows to select a crystal structure at wish. Beyond these examples, we discuss further opportunities which cybloids offer.
Complex chiral columns made of achiral quinoxaline derivatives with semi-flexible cores
Mesogenic materials, quinoxaline derivatives with semi-flexible cores, are reported to form new type of 3D columnar structure with large crystallographic unit cell and Fddd symmetry below columnar hexagonal phase. The 3D columnar structure is a result of frustration imposed by arrangement of helical columns of opposite chirality into triangular lattice. The studied materials exhibit fluorescent properties that could be easily tuned by modification of molecular structure, compounds with the extended {\pi} electron conjugated systems form aggregates and fluorescence is quenched. For molecules with flexible structure the fluorescence quantum yield reaches 25%. On the other hand, compounds with more rigid mesogenic core, for which fluorescence is suppressed show strong hole photocurrent. For some materials also bi-polar: hole and electron transfer was observed.
Ionospheric activity prediction using convolutional recurrent neural networks
The ionosphere electromagnetic activity is a major factor of the quality of satellite telecommunications, Global Navigation Satellite Systems (GNSS) and other vital space applications. Being able to forecast globally the Total Electron Content (TEC) would enable a better anticipation of potential performance degradations. A few studies have proposed models able to predict the TEC locally, but not worldwide for most of them. Thanks to a large record of past TEC maps publicly available, we propose a method based on Deep Neural Networks (DNN) to forecast a sequence of global TEC maps consecutive to an input sequence of TEC maps, without introducing any prior knowledge other than Earth rotation periodicity. By combining several state-of-the-art architectures, the proposed approach is competitive with previous works on TEC forecasting while predicting the TEC globally.
Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing
An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
Minimal evolution times for fast, pulse-based state preparation in silicon spin qubits
Standing as one of the most significant barriers to reaching quantum advantage, state-preparation fidelities on noisy intermediate-scale quantum processors suffer from quantum-gate errors, which accumulate over time. A potential remedy is pulse-based state preparation. We numerically investigate the minimal evolution times (METs) attainable by optimizing (microwave and exchange) pulses on silicon hardware. We investigate two state preparation tasks. First, we consider the preparation of molecular ground states and find the METs for H_2, HeH^+, and LiH to be 2.4 ns, 4.4 ns, and 27.2 ns, respectively. Second, we consider transitions between arbitrary states and find the METs for transitions between arbitrary four-qubit states to be below 50 ns. For comparison, connecting arbitrary two-qubit states via one- and two-qubit gates on the same silicon processor requires approximately 200 ns. This comparison indicates that pulse-based state preparation is likely to utilize the coherence times of silicon hardware more efficiently than gate-based state preparation. Finally, we quantify the effect of silicon device parameters on the MET. We show that increasing the maximal exchange amplitude from 10 MHz to 1 GHz accelerates the METs, e.g., for H_2 from 84.3 ns to 2.4 ns. This demonstrates the importance of fast exchange. We also show that increasing the maximal amplitude of the microwave drive from 884 kHz to 56.6 MHz shortens state transitions, e.g., for two-qubit states from 1000 ns to 25 ns. Our results bound both the state-preparation times for general quantum algorithms and the execution times of variational quantum algorithms with silicon spin qubits.
AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments
Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semi-circle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the DC ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero DC conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semi-circle transitions between them. The model can be regarded as a strongly coupled analog of the old `composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model.
ECM: A Unified Electronic Circuit Model for Explaining the Emergence of In-Context Learning and Chain-of-Thought in Large Language Model
Recent advancements in large language models (LLMs) have led to significant successes across various applications, where the most noticeable is to a series of emerging capabilities, particularly in the areas of In-Context Learning (ICL) and Chain-of-Thought (CoT). To better understand and control model performance, many studies have begun investigating the underlying causes of these phenomena and their impact on task outcomes. However, existing explanatory frameworks predominantly focus on isolating and explaining ICL and CoT independently, leading to an incomplete understanding of their combined influence on model performance. To address this gap, we propose the Electronic Circuit Model (ECM), which provides a foundation for developing scalable, learnable policies and improving the management of AI-generated content. Specifically, ECM conceptualizes model behavior as an electronic circuit: ICL is represented as semantic magnetic field to providing an additional voltage following Faraday's Law, while CoT is modeled as series resistors to constrain the model output performance following Ohm's Law. Experimental results demonstrate that the ECM effectively predicts and explains LLM performance across a variety of prompting strategies. Furthermore, we apply ECM to advanced reasoning strategy optimization on a series of tasks, such as the International Olympiad in Informatics (IOI) and the International Mathematical Olympiad (IMO), achieving competitive performance that surpasses nearly 80% of top human competitors.
Spin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal
A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.
A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials
The presence of point defects such as vacancies plays an important role in material design. Here, we demonstrate that a graph neural network (GNN) model trained only on perfect materials can also be used to predict vacancy formation energies (E_{vac}) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations with reasonable accuracy and show the potential that GNNs are able to capture a functional form for energy predictions. To test this strategy, we developed a DFT dataset of 508 E_{vac} consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192494 E_{vac} for 55723 materials in the JARVIS-DFT database.
Classification-based detection and quantification of cross-domain data bias in materials discovery
It stands to reason that the amount and the quality of data is of key importance for setting up accurate AI-driven models. Among others, a fundamental aspect to consider is the bias introduced during sample selection in database generation. This is particularly relevant when a model is trained on a specialized dataset to predict a property of interest, and then applied to forecast the same property over samples having a completely different genesis. Indeed, the resulting biased model will likely produce unreliable predictions for many of those out-of-the-box samples. Neglecting such an aspect may hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. In this regard, with superconducting and thermoelectric materials as two prototypical case studies in the field of energy material discovery, we present and validate a new method (based on a classification strategy) capable of detecting, quantifying and circumventing the presence of cross-domain data bias.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Filtering Video Noise as Audio with Motion Detection to Form a Musical Instrument
Even though they differ in the physical domain, digital video and audio share many characteristics. Both are temporal data streams often stored in buffers with 8-bit values. This paper investigates a method for creating harmonic sounds with a video signal as input. A musical instrument is proposed, that utilizes video in both a sound synthesis method, and in a controller interface for selecting musical notes at specific velocities. The resulting instrument was informally determined by the author to sound both pleasant and interesting, but hard to control, and therefore suited for synth pad sounds.
Pseudo vs. True Defect Classification in Printed Circuits Boards using Wavelet Features
In recent years, Printed Circuit Boards (PCB) have become the backbone of a large number of consumer electronic devices leading to a surge in their production. This has made it imperative to employ automatic inspection systems to identify manufacturing defects in PCB before they are installed in the respective systems. An important task in this regard is the classification of defects as either true or pseudo defects, which decides if the PCB is to be re-manufactured or not. This work proposes a novel approach to detect most common defects in the PCBs. The problem has been approached by employing highly discriminative features based on multi-scale wavelet transform, which are further boosted by using a kernalized version of the support vector machines (SVM). A real world printed circuit board dataset has been used for quantitative analysis. Experimental results demonstrated the efficacy of the proposed method.
Striped Spin Density Wave in a Graphene/Black Phosphorous Heterostructure
A bilayer formed by stacking two distinct materials creates a moiré lattice, which can serve as a platform for novel electronic phases. In this work we study a unique example of such a system: the graphene-black phosphorus heterostructure (G/BP), which has been suggested to have an intricate band structure. Most notably, the valence band hosts a quasi-one-dimensional region in the Brillouin zone of high density of states, suggesting that various many-body electronic phases are likely to emerge. We derive an effective tight-binding model that reproduces this band structure, and explore the emergent broken-symmetry phases when interactions are introduced. Employing a mean-field analysis, we find that the favored ground-state exhibits a striped spin density wave (SDW) order, characterized by either one of two-fold degenerate wave-vectors that are tunable by gating. Further exploring the phase-diagram controlled by gate voltage and the interaction strength, we find that the SDW-ordered state undergoes a metal to insulator transition via an intermediate metallic phase which supports striped SDW correlations. Possible experimental signatures are discussed, in particular a highly anisotropic dispersion of the collective excitations which should be manifested in electric and thermal transport.
DiffRenderGAN: Addressing Training Data Scarcity in Deep Segmentation Networks for Quantitative Nanomaterial Analysis through Differentiable Rendering and Generative Modelling
Nanomaterials exhibit distinctive properties governed by parameters such as size, shape, and surface characteristics, which critically influence their applications and interactions across technological, biological, and environmental contexts. Accurate quantification and understanding of these materials are essential for advancing research and innovation. In this regard, deep learning segmentation networks have emerged as powerful tools that enable automated insights and replace subjective methods with precise quantitative analysis. However, their efficacy depends on representative annotated datasets, which are challenging to obtain due to the costly imaging of nanoparticles and the labor-intensive nature of manual annotations. To overcome these limitations, we introduce DiffRenderGAN, a novel generative model designed to produce annotated synthetic data. By integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework, DiffRenderGAN optimizes textural rendering parameters to generate realistic, annotated nanoparticle images from non-annotated real microscopy images. This approach reduces the need for manual intervention and enhances segmentation performance compared to existing synthetic data methods by generating diverse and realistic data. Tested on multiple ion and electron microscopy cases, including titanium dioxide (TiO_2), silicon dioxide (SiO_2)), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.
QDNA-ID Quantum Device Native Authentication
QDNA-ID is a trust-chain framework that links physical quantum behavior to digitally verified records. The system first executes standard quantum circuits with random shot patterns across different devices to generate entropy profiles and measurement data that reveal device-specific behavior. A Bell or CHSH test is then used to confirm that correlations originate from genuine non classical processes rather than classical simulation. The verified outcomes are converted into statistical fingerprints using entropy, divergence, and bias features to characterize each device. These features and metadata for device, session, and random seed parameters are digitally signed and time stamped to ensure integrity and traceability. Authenticated artifacts are stored in a hierarchical index for reproducible retrieval and long term auditing. A visualization and analytics interface monitors drift, policy enforcement, and device behavior logs. A machine learning engine tracks entropy drift, detects anomalies, and classifies devices based on evolving patterns. An external verification API supports independent recomputation of hashes, signatures, and CHSH evidence. QDNA-ID operates as a continuous feedback loop that maintains a persistent chain of trust for quantum computing environments.
Automated Extraction of Material Properties using LLM-based AI Agents
The rapid discovery of materials is constrained by the lack of large, machine-readable datasets that couple performance metrics with structural context. Existing databases are either small, manually curated, or biased toward first principles results, leaving experimental literature underexploited. We present an agentic, large language model (LLM)-driven workflow that autonomously extracts thermoelectric and structural-properties from about 10,000 full-text scientific articles. The pipeline integrates dynamic token allocation, zeroshot multi-agent extraction, and conditional table parsing to balance accuracy against computational cost. Benchmarking on 50 curated papers shows that GPT-4.1 achieves the highest accuracy (F1 = 0.91 for thermoelectric properties and 0.82 for structural fields), while GPT-4.1 Mini delivers nearly comparable performance (F1 = 0.89 and 0.81) at a fraction of the cost, enabling practical large scale deployment. Applying this workflow, we curated 27,822 temperature resolved property records with normalized units, spanning figure of merit (ZT), Seebeck coefficient, conductivity, resistivity, power factor, and thermal conductivity, together with structural attributes such as crystal class, space group, and doping strategy. Dataset analysis reproduces known thermoelectric trends, such as the superior performance of alloys over oxides and the advantage of p-type doping, while also surfacing broader structure-property correlations. To facilitate community access, we release an interactive web explorer with semantic filters, numeric queries, and CSV export. This study delivers the largest LLM-curated thermoelectric dataset to date, provides a reproducible and cost-profiled extraction pipeline, and establishes a foundation for scalable, data-driven materials discovery beyond thermoelectrics.
Excitonic phases in a spatially separated electron-hole ladder model
We obtain the numerical ground state of a one-dimensional ladder model with the upper and lower chains occupied by spatially-separated electrons and holes, respectively. Under charge neutrality, we find that the excitonic bound states are always formed, i.e., no finite regime of decoupled electron and hole plasma exists at zero temperature. The system either behaves like a bosonic liquid or a bosonic crystal depending on the inter-chain attractive and intra-chain repulsive interaction strengths. We also provide the detailed excitonic phase diagrams in the intra- and inter-chain interaction parameters, with and without disorder. We also comment on the corresponding two-dimensional electron-hole bilayer exciton condensation.
MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials
Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.
JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
Deep Learning with Coherent Nanophotonic Circuits
Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.
An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning
The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.
On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.
From black holes to strange metals
Since the mid-eighties there has been an accumulation of metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory. Examples of these so-called non-Fermi liquids include the strange metal phase of high transition temperature cuprates, and heavy fermion systems near a quantum phase transition. We report on a class of non-Fermi liquids discovered using gauge/gravity duality. The low energy behavior of these non-Fermi liquids is shown to be governed by a nontrivial infrared (IR) fixed point which exhibits nonanalytic scaling behavior only in the temporal direction. Within this class we find examples whose single-particle spectral function and transport behavior resemble those of strange metals. In particular, the contribution from the Fermi surface to the conductivity is inversely proportional to the temperature. In our treatment these properties can be understood as being controlled by the scaling dimension of the fermion operator in the emergent IR fixed point.
PCB Component Detection using Computer Vision for Hardware Assurance
Printed Circuit Board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods, however they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduce the number of trainable ML parameters and thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection using semantic data. Results of this study indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities.
Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning
We develop a multi-step workflow for the discovery of conventional superconductors, starting with a Bardeen Cooper Schrieffer inspired pre-screening of 1736 materials with high Debye temperature and electronic density of states. Next, we perform electron-phonon coupling calculations for 1058 of them to establish a large and systematic database of BCS superconducting properties. Using the McMillan-Allen-Dynes formula, we identify 105 dynamically stable materials with transition temperatures, Tc>5 K. Additionally, we analyze trends in our dataset and individual materials including MoN, VC, VTe, KB6, Ru3NbC, V3Pt, ScN, LaN2, RuO2, and TaC. We demonstrate that deep-learning(DL) models can predict superconductor properties faster than direct first principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve model performance versus a direct DL prediction of Tc. We apply the trained models on the crystallographic open database and pre-screen candidates for further DFT calculations.
Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials
Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.
AtomGPT: Atomistic Generative Pre-trained Transformer for Forward and Inverse Materials Design
Large language models (LLMs) such as generative pretrained transformers (GPTs) have shown potential for various commercial applications, but their applicability for materials design remains underexplored. In this article, we introduce AtomGPT, a model specifically developed for materials design based on transformer architectures, to demonstrate the capability for both atomistic property prediction and structure generation. We show that a combination of chemical and structural text descriptions can efficiently predict material properties with accuracy comparable to graph neural network models, including formation energies, electronic bandgaps from two different methods and superconducting transition temperatures. Furthermore, we demonstrate that AtomGPT can generate atomic structures for tasks such as designing new superconductors, with the predictions validated through density functional theory calculations. This work paves the way for leveraging LLMs in forward and inverse materials design, offering an efficient approach to the discovery and optimization of materials.
Gate-tunable Exchange Bias and Voltage-controlled Magnetization Switching in a van der Waals Ferromagnet
The discovery of van der Waals magnets has established a new domain in the field of magnetism, opening novel pathways for the electrical control of magnetic properties. In this context, Fe3GeTe2 (FGT) emerges as an exemplary candidate owing to its intrinsic metallic properties, which facilitate the interplay of both charge and spin degrees of freedom. Here, the bidirectional voltage control of exchange bias (EB) effect in a perpendicularly magnetized all-van der Waals FGT/O-FGT/hBN heterostructure is demonstrated. The antiferromagnetic O-FGT layer is formed by naturally oxidizing the FGT surface. The observed EB magnitude reaches 1.4 kOe with a blocking temperature (150 K) reaching close to the Curie temperature of FGT. Both the exchange field and the blocking temperature values are among the highest in the context of layered materials. The EB modulation exhibits a linear dependence on the gate voltage and its polarity, observable in both positive and negative field cooling (FC) experiments. Additionally, gate voltage-controlled magnetization switching, highlighting the potential of FGT-based heterostructures is demonstrated in advanced spintronic devices. These findings display a methodology to modulate the magnetism of van der Waals magnets offering new avenues for the development of high-performance magnetic devices.
AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies
The massive and large-scale design of foundational semiconductor integrated circuits (ICs) is crucial to sustaining the advancement of many emerging and future technologies, such as generative AI, 5G/6G, and quantum computing. Excitingly, recent studies have shown the great capabilities of foundational models in expediting the design of digital ICs. Yet, applying generative AI techniques to accelerate the design of analog ICs remains a significant challenge due to critical domain-specific issues, such as the lack of a comprehensive dataset and effective representation methods for analog circuits. This paper proposes, AnalogGenie, a textbf{Gen}erattextbf{i}ve textbf{e}ngine for automatic design/discovery of textbf{Analog} circuit topologies--the most challenging and creative task in the conventional manual design flow of analog ICs. AnalogGenie addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits. Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts. Our work paves the way to transform the longstanding time-consuming manual design flow of analog ICs to an automatic and massive manner powered by generative AI. Our source code is available at https://github.com/xz-group/AnalogGenie.
First principles simulations of dense hydrogen
Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data. rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange-correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principle PIMC and DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions.
Quantifying chemical short-range order in metallic alloys
Metallic alloys often form phases - known as solid solutions - in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO) and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due to their extreme configurational complexity (e.g., high-entropy alloys). Short-range order renders solid solutions "slightly less random than completely random", which is a physically intuitive picture, but not easily quantifiable due to the sheer number of possible chemical motifs and their subtle spatial distribution on the lattice. Here we present a multiscale method to predict and quantify the SRO state of an alloy with atomic resolution, incorporating machine learning techniques to bridge the gap between electronic-structure calculations and the characteristic length scale of SRO. The result is an approach capable of predicting SRO length scale in agreement with experimental measurements while comprehensively correlating SRO with fundamental quantities such as local lattice distortions. This work advances the quantitative understanding of solid-solution phases, paving the way for SRO rigorous incorporation into predictive mechanical and thermodynamic models.
Numerical modeling of SNSPD absorption utilizing optical conductivity with quantum corrections
Superconducting nanowire single-photon detectors are widely used in various fields of physics and technology, due to their high efficiency and timing precision. Although, in principle, their detection mechanism offers broadband operation, their wavelength range has to be optimized by the optical cavity parameters for a specific task. We present a study of the optical absorption of a superconducting nanowire single photon detector (SNSPD) with an optical cavity. The optical properties of the niobium nitride films, measured by spectroscopic ellipsometry, were modelled using the Drude-Lorentz model with quantum corrections. The numerical simulations of the optical response of the detectors show that the wavelength range of the detector is not solely determined by its geometry, but the optical conductivity of the disordered thin metallic films contributes considerably. This contribution can be conveniently expressed by the ratio of imaginary and real parts of the optical conductivity. This knowledge can be utilized in detector design.
Modeling Temperature, Frequency, and Strain Effects on the Linear Electro-Optic Coefficients of Ferroelectric Oxides
An electro-optic modulator offers the function of modulating the propagation of light in a material with electric field and enables seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau-Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO3, LiNbO3, and LiTaO3. We present their temperature-, frequency- and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification.
Emergence of a new band and the Lifshitz transition in kagome metal ScV_6Sn_6 with charge density wave
Topological kagome systems have been a topic of great interest in condensed matter physics due totheir unique electronic properties. The vanadium-based kagome materials are particularly intrigu-ing since they exhibit exotic phenomena such as charge density wave (CDW) and unconventionalsuperconductivity. The origin of these electronic instabilities is not fully understood, and the re-cent discovery of a charge density wave in ScV6Sn6provides a new avenue for investigation. In thiswork, we investigate the electronic structure of the novel kagome metal ScV6Sn6using angle resolvedphotoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and first-principlesdensity functional theory calculations. Our analysis reveals for the first time the temperature-dependent band changes of ScV6Sn6and identifies a new band that exhibits a strong signatureof a structure with CDW below the critical temperature. Further analysis revealed that this newband is due to the surface kagome layer of the CDW structure. In addition, a Lifshitz transition isidentified in the ARPES spectra that is related to the saddle point moving across the Fermi levelat the critical temperature for the CDW formation. This result shows the CDW behavior may alsobe related to nesting of the saddle point, similar to related materials. However, no energy gap is observed at the Fermi level and thus the CDW is not a typical Fermi surface nesting scenario. These results provide new insights into the underlying physics of the CDW in the kagome materials and could have implications for the development of materials with new functionality.
Hall effect thruster design via deep neural network for additive manufacturing
Hall effect thrusters are one of the most versatile and popular electric propulsion systems for space use. Industry trends towards interplanetary missions arise advances in design development of such propulsion systems. It is understood that correct sizing of discharge channel in Hall effect thruster impact performance greatly. Since the complete physics model of such propulsion system is not yet optimized for fast computations and design iterations, most thrusters are being designed using so-called scaling laws. But this work focuses on rather novel approach, which is outlined less frequently than ordinary scaling design approach in literature. Using deep machine learning it is possible to create predictive performance model, which can be used to effortlessly get design of required hall thruster with required characteristics using way less computational power than design from scratch and way more flexible than usual scaling approach.
Bridging the Data Gap: Spatially Conditioned Diffusion Model for Anomaly Generation in Photovoltaic Electroluminescence Images
Reliable anomaly detection in photovoltaic (PV) modules is critical for maintaining solar energy efficiency. However, developing robust computer vision models for PV inspection is constrained by the scarcity of large-scale, diverse, and balanced datasets. This study introduces PV-DDPM, a spatially conditioned denoising diffusion probabilistic model that generates anomalous electroluminescence (EL) images across four PV cell types: multi-crystalline silicon (multi-c-Si), mono-crystalline silicon (mono-c-Si), half-cut multi-c-Si, and interdigitated back contact (IBC) with dogbone interconnect. PV-DDPM enables controlled synthesis of single-defect and multi-defect scenarios by conditioning on binary masks representing structural features and defect positions. To the best of our knowledge, this is the first framework that jointly models multiple PV cell types while supporting simultaneous generation of diverse anomaly types. We also introduce E-SCDD, an enhanced version of the SCDD dataset, comprising 1,000 pixel-wise annotated EL images spanning 30 semantic classes, and 1,768 unlabeled synthetic samples. Quantitative evaluation shows our generated images achieve a Fréchet Inception Distance (FID) of 4.10 and Kernel Inception Distance (KID) of 0.0023 pm 0.0007 across all categories. Training the vision--language anomaly detection model AA-CLIP on E-SCDD, compared to the SCDD dataset, improves pixel-level AUC and average precision by 1.70 and 8.34 points, respectively.
Convolutional Neural Networks and Volcano Plots: Screening and Prediction of Two-Dimensional Single-Atom Catalysts
Single-atom catalysts (SACs) have emerged as frontiers for catalyzing chemical reactions, yet the diverse combinations of active elements and support materials, the nature of coordination environments, elude traditional methodologies in searching optimal SAC systems with superior catalytic performance. Herein, by integrating multi-branch Convolutional Neural Network (CNN) analysis models to hybrid descriptor based activity volcano plot, 2D SAC system composed of diverse metallic single atoms anchored on six type of 2D supports, including graphitic carbon nitride, nitrogen-doped graphene, graphene with dual-vacancy, black phosphorous, boron nitride, and C2N, are screened for efficient CO2RR. Starting from establishing a correlation map between the adsorption energies of intermediates and diverse electronic and elementary descriptors, sole singular descriptor lost magic to predict catalytic activity. Deep learning method utilizing multi-branch CNN model therefore was employed, using 2D electronic density of states as input to predict adsorption energies. Hybrid-descriptor enveloping both C- and O-types of CO2RR intermediates was introduced to construct volcano plots and limiting potential periodic table, aiming for intuitive screening of catalyst candidates for efficient CO2 reduction to CH4. The eDOS occlusion experiments were performed to unravel individual orbital contribution to adsorption energy. To explore the electronic scale principle governing practical engineering catalytic CO2RR activity, orbitalwise eDOS shifting experiments based on CNN model were employed. The study involves examining the adsorption energy and, consequently, catalytic activities while varying supported single atoms. This work offers a tangible framework to inform both theoretical screening and experimental synthesis, thereby paving the way for systematically designing efficient SACs.
Automatic extraction of materials and properties from superconductors scientific literature
The automatic extraction of materials and related properties from the scientific literature is gaining attention in data-driven materials science (Materials Informatics). In this paper, we discuss Grobid-superconductors, our solution for automatically extracting superconductor material names and respective properties from text. Built as a Grobid module, it combines machine learning and heuristic approaches in a multi-step architecture that supports input data as raw text or PDF documents. Using Grobid-superconductors, we built SuperCon2, a database of 40324 materials and properties records from 37700 papers. The material (or sample) information is represented by name, chemical formula, and material class, and is characterized by shape, doping, substitution variables for components, and substrate as adjoined information. The properties include the Tc superconducting critical temperature and, when available, applied pressure with the Tc measurement method.
Alternative harmonic detection approach for quantitative determination of spin and orbital torques
In this study, the spin-orbit torque (SOT) in light metal oxide systems is investigated using an experimental approach based on harmonic Hall voltage techniques in out-of-plane (OOP) angular geometry for samples with in-plane magnetic anisotropy. In parallel, an analytical derivation of this alternative OOP harmonic Hall detection geometry has been developed, followed by experimental validation to extract SOT effective fields. In addition, to accurately quantifying SOT, this method allows complete characterization of thermoelectric effects, opening promising avenues for accurate SOT characterization in related systems. In particular, this study corroborates the critical role of naturally oxidized copper interfaced with metallic Cu in the generation of orbital current in Co(2)|Pt(4)|CuOx(3), demonstrating a two-fold increase in damping-like torques compared to a reference sample with an oxidized Al capping layer. These findings offer promising directions for future research on the application aspect of non-equilibrium orbital angular momentum.
Time-Fractional Approach to the Electrochemical Impedance: The Displacement Current
We establish, in general terms, the conditions to be satisfied by a time-fractional approach formulation of the Poisson-Nernst-Planck model in order to guarantee that the total current across the sample be solenoidal, as required by the Maxwell equation. Only in this case the electric impedance of a cell can be determined as the ratio between the applied difference of potential and the current across the cell. We show that in the case of anomalous diffusion, the model predicts for the electric impedance of the cell a constant phase element behaviour in the low frequency region. In the parametric curve of the reactance versus the resistance, the slope coincides with the order of the fractional time derivative.
Robust Spectral Anomaly Detection in EELS Spectral Images via Three Dimensional Convolutional Variational Autoencoders
We introduce a Three-Dimensional Convolutional Variational Autoencoder (3D-CVAE) for automated anomaly detection in Electron Energy Loss Spectroscopy Spectrum Imaging (EELS-SI) data. Our approach leverages the full three-dimensional structure of EELS-SI data to detect subtle spectral anomalies while preserving both spatial and spectral correlations across the datacube. By employing negative log-likelihood loss and training on bulk spectra, the model learns to reconstruct bulk features characteristic of the defect-free material. In exploring methods for anomaly detection, we evaluated both our 3D-CVAE approach and Principal Component Analysis (PCA), testing their performance using Fe L-edge peak shifts designed to simulate material defects. Our results show that 3D-CVAE achieves superior anomaly detection and maintains consistent performance across various shift magnitudes. The method demonstrates clear bimodal separation between normal and anomalous spectra, enabling reliable classification. Further analysis verifies that lower dimensional representations are robust to anomalies in the data. While performance advantages over PCA diminish with decreasing anomaly concentration, our method maintains high reconstruction quality even in challenging, noise-dominated spectral regions. This approach provides a robust framework for unsupervised automated detection of spectral anomalies in EELS-SI data, particularly valuable for analyzing complex material systems.
Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets
Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.
Portable medical devices creation technology by using the Bluetooth module
The article is devoted Bluetooth wireless personal area networks specification, which provides standard for exchanging data over short distances. It is shown how the technology has evolved and its application in the design of devices. Health Device Profile considered in details, which the main feature is the work of a medical orientation devices.
A general-purpose material property data extraction pipeline from large polymer corpora using Natural Language Processing
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from published literature. We used natural language processing (NLP) methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science abstracts, which outperforms other baseline models in three out of five named entity recognition datasets when used as the encoder for text. Using this pipeline, we obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted through our pipeline is made available through a web platform at https://polymerscholar.org which can be used to locate material property data recorded in abstracts conveniently. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with a complete set of extracted material property information.
Accelerating the Search for Superconductors Using Machine Learning
Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.
Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional materials
We introduce the use of Crystal Graph Convolutional Neural Networks (CGCNN), Fully Connected Neural Networks (FCNN) and XGBoost to predict thermoelectric properties. The dataset for the CGCNN is independent of Density Functional Theory (DFT) and only relies on the crystal and atomic information, while that for the FCNN is based on a rich attribute list mined from Materialsproject.org. The results show that the optimized FCNN is three layer deep and is able to predict the scattering-time independent thermoelectric powerfactor much better than the CGCNN (or XGBoost), suggesting that bonding and density of states descriptors informed from materials science knowledge obtained partially from DFT are vital to predict functional properties.
From structure mining to unsupervised exploration of atomic octahedral networks
Networks of atom-centered coordination octahedra commonly occur in inorganic and hybrid solid-state materials. Characterizing their spatial arrangements and characteristics is crucial for relating structures to properties for many materials families. The traditional method using case-by-case inspection becomes prohibitive for discovering trends and similarities in large datasets. Here, we operationalize chemical intuition to automate the geometric parsing, quantification, and classification of coordination octahedral networks. We find axis-resolved tilting trends in ABO_{3} perovskite polymorphs, which assist in detecting oxidation state changes. Moreover, we develop a scale-invariant encoding scheme to represent these networks, which, combined with human-assisted unsupervised machine learning, allows us to taxonomize the inorganic framework polytypes in hybrid iodoplumbates (A_xPb_yI_z). Consequently, we uncover a violation of Pauling's third rule and the design principles underpinning their topological diversity. Our results offer a glimpse into the vast design space of atomic octahedral networks and inform high-throughput, targeted screening of specific structure types.
Differentiable Euler Characteristic Transforms for Shape Classification
The Euler Characteristic Transform (ECT) has proven to be a powerful representation, combining geometrical and topological characteristics of shapes and graphs. However, the ECT was hitherto unable to learn task-specific representations. We overcome this issue and develop a novel computational layer that enables learning the ECT in an end-to-end fashion. Our method, the Differentiable Euler Characteristic Transform (DECT), is fast and computationally efficient, while exhibiting performance on a par with more complex models in both graph and point cloud classification tasks. Moreover, we show that this seemingly simple statistic provides the same topological expressivity as more complex topological deep learning layers.
A Unified Predictive and Generative Solution for Liquid Electrolyte Formulation
Liquid electrolytes are critical components of next-generation energy storage systems, enabling fast ion transport, minimizing interfacial resistance, and ensuring electrochemical stability for long-term battery performance. However, measuring electrolyte properties and designing formulations remain experimentally and computationally expensive. In this work, we present a unified framework for designing liquid electrolyte formulation, integrating a forward predictive model with an inverse generative approach. Leveraging both computational and experimental data collected from literature and extensive molecular simulations, we train a predictive model capable of accurately estimating electrolyte properties from ionic conductivity to solvation structure. Our physics-informed architecture preserves permutation invariance and incorporates empirical dependencies on temperature and salt concentration, making it broadly applicable to property prediction tasks across molecular mixtures. Furthermore, we introduce -- to the best of our knowledge -- the first generative machine learning framework for molecular mixture design, demonstrated on electrolyte systems. This framework supports multi-condition-constrained generation, addressing the inherently multi-objective nature of materials design. As a proof of concept, we experimentally identified three liquid electrolytes with both high ionic conductivity and anion-concentrated solvation structure. This unified framework advances data-driven electrolyte design and can be readily extended to other complex chemical systems beyond electrolytes.
InSe: a two-dimensional semiconductor with superior flexibility
Two-dimensional Indium Selenide (InSe) has attracted extensive attention recently due to its record-high charge carrier mobility and photoresponsivity in the fields of electronics and optoelectronics. Nevertheless, the mechanical properties of this material in the ultra-thin regime have not been investigated yet. Here, we present our efforts to determine the Young's modulus of thin InSe (~1-2 layers to ~40 layers) flakes experimentally by using buckling-based methodology. We find that the Young's modulus has a value of 23.1 +- 5.2 GPa, one of the lowest values reported up to date for crystalline two-dimensional materials. This superior flexibility can be very attractive for different applications, such as strain engineering and flexible electronics.
Comparative modeling studies of TSDC: investigation of Alpha-relaxation in Amorphous polymers
A model to investigate Thermally Stimulated Depolarization Current (TSDC) peak parameters using the dipole-dipole interaction concept is proposed by the author in this work. The proposed model describe the (TSDC) peak successfully since it gives a significant peak parameters (i.e. Activation energy (E) and the per-exponential factor (\tau_0) in addition to the dipole-dipole interaction strength parameter (di). Application of this model to determine the peak parameters of polyvinyl chloride(PVC) polymer is presented . The results show how the model fit the experimental thermal sampling data. Finally the results are compared to the well know techniques; the initial rise method (IR), the half width method (HW) in addition to the Cowell and Woods analysis.
Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems
Despite the variety of available computational approaches, state-of-the-art methods for calculating excitation energies such as time-dependent density functional theory (TDDFT), are computationally demanding and thus limited to moderate system sizes. Here, we introduce a new variation of constrained DFT (CDFT), wherein the constraint corresponds to a particular transition (T), or combination of transitions, between occupied and virtual orbitals, rather than a region of the simulation space as in traditional CDFT. We compare T-CDFT with TDDFT and DeltaSCF results for the low lying excited states (S_{1} and T_{1}) of a set of gas phase acene molecules and OLED emitters, as well as with reference results from the literature. At the PBE level of theory, T-CDFT outperforms DeltaSCF for both classes of molecules, while also proving to be more robust. For the local excitations seen in the acenes, T-CDFT and TDDFT perform equally well. For the charge-transfer (CT)-like excitations seen in the OLED molecules, T-CDFT also performs well, in contrast to the severe energy underestimation seen with TDDFT. In other words, T-CDFT is equally applicable to both local excitations and CT states, providing more reliable excitation energies at a much lower computational cost than TDDFT. T-CDFT is designed for large systems and has been implemented in the linear scaling BigDFT code. It is therefore ideally suited for exploring the effects of explicit environments on excitation energies, paving the way for future simulations of excited states in complex realistic morphologies, such as those which occur in OLED materials.
Sparks of Artificial General Intelligence(AGI) in Semiconductor Material Science: Early Explorations into the Next Frontier of Generative AI-Assisted Electron Micrograph Analysis
Characterizing materials with electron micrographs poses significant challenges for automated labeling due to the complex nature of nanomaterial structures. To address this, we introduce a fully automated, end-to-end pipeline that leverages recent advances in Generative AI. It is designed for analyzing and understanding the microstructures of semiconductor materials with effectiveness comparable to that of human experts, contributing to the pursuit of Artificial General Intelligence (AGI) in nanomaterial identification. Our approach utilizes Large MultiModal Models (LMMs) such as GPT-4V, alongside text-to-image models like DALLE-3. We integrate a GPT-4 guided Visual Question Answering (VQA) method to analyze nanomaterial images, generate synthetic nanomaterial images via DALLE-3, and employ in-context learning with few-shot prompting in GPT-4V for accurate nanomaterial identification. Our method surpasses traditional techniques by enhancing the precision of nanomaterial identification and optimizing the process for high-throughput screening.
Scaling silicon-based quantum computing using CMOS technology: State-of-the-art, Challenges and Perspectives
Complementary metal-oxide semiconductor (CMOS) technology has radically reshaped the world by taking humanity to the digital age. Cramming more transistors into the same physical space has enabled an exponential increase in computational performance, a strategy that has been recently hampered by the increasing complexity and cost of miniaturization. To continue achieving significant gains in computing performance, new computing paradigms, such as quantum computing, must be developed. However, finding the optimal physical system to process quantum information, and scale it up to the large number of qubits necessary to build a general-purpose quantum computer, remains a significant challenge. Recent breakthroughs in nanodevice engineering have shown that qubits can now be manufactured in a similar fashion to silicon field-effect transistors, opening an opportunity to leverage the know-how of the CMOS industry to address the scaling challenge. In this article, we focus on the analysis of the scaling prospects of quantum computing systems based on CMOS technology.
On Scaling of Hall-Effect Thrusters Using Neural Nets
Hall-effect thrusters (HETs) are widely used for modern near-earth spacecraft propulsion and are vital for future deep-space missions. Methods of modeling HETs are developing rapidly. However, such methods are not yet precise enough and cannot reliably predict the parameters of a newly designed thruster, mostly due to the enormous computational cost of a HET plasma simulation. Another approach is to use scaling techniques based on available experimental data. This paper proposes an approach for scaling HETs using neural networks and other modern machine learning methods. The new scaling model was built with information from an extensive database of HET parameters collected from published papers. Predictions of the new scaling model are valid for the operating parameters domain covered by the database. During the design, this model can help HET developers estimate the performance of a newly-designed thruster. At the stage of experimental research, the model can be used to compare the achieved characteristics of the studied thruster with the level obtained by other developers. A comparison with the state-of-the-art HET scaling model is also presented.
First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2
Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
FPIC: A Novel Semantic Dataset for Optical PCB Assurance
Outsourced printed circuit board (PCB) fabrication necessitates increased hardware assurance capabilities. Several assurance techniques based on automated optical inspection (AOI) have been proposed that leverage PCB images acquired using digital cameras. We review state-of-the-art AOI techniques and observe a strong, rapid trend toward machine learning (ML) solutions. These require significant amounts of labeled ground truth data, which is lacking in the publicly available PCB data space. We contribute the FICS PCB Image Collection (FPIC) dataset to address this need. Additionally, we outline new hardware security methodologies enabled by our data set.
Learning to Design Circuits
Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve 250times higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.
Extracting inter-dot tunnel couplings between few donor quantum dots in silicon
The long term scaling prospects for solid-state quantum computing architectures relies heavily on the ability to simply and reliably measure and control the coherent electron interaction strength, known as the tunnel coupling, t_c. Here, we describe a method to extract the t_c between two quantum dots (QDs) utilising their different tunnel rates to a reservoir. We demonstrate the technique on a few donor triple QD tunnel coupled to a nearby single-electron transistor (SET) in silicon. The device was patterned using scanning tunneling microscopy-hydrogen lithography allowing for a direct measurement of the tunnel coupling for a given inter-dot distance. We extract {t}_{{c}}=5.5pm 1.8;{GHz} and {t}_{{c}}=2.2pm 1.3;{GHz} between each of the nearest-neighbour QDs which are separated by 14.5 nm and 14.0 nm, respectively. The technique allows for an accurate measurement of t_c for nanoscale devices even when it is smaller than the electron temperature and is an ideal characterisation tool for multi-dot systems with a charge sensor.
Experimental demonstration of superdirective spherical dielectric antenna
An experimental demonstration of directivities exceeding the fundamental Kildal limit, a phenomenon called superdirectivity, is provided for spherical high-index dielectric antennas with an electric dipole excitation. A directivity factor of about 10 with a total efficiency of more than 80\% for an antenna having a size of a third of the wavelength was measured. High directivities are shown to be associated with constructive interference of particular electric and magnetic modes of an open spherical resonator. Both analytic solution for a point dipole and a full-wave rigorous simulation for a realistic dipole antenna were employed for optimization and analysis, yielding an excellent agreement between experimentally measured and numerically predicted directivities. The use of high-index low-loss ceramics can significantly reduce the physical size of such antennas while maintaining their overall high radiation efficiency. Such antennas can be attractive for various high-frequency applications, such as antennas for the Internet of things, smart city systems, 5G network systems, and others. The demonstrated concept can be scaled in frequency.
Localized Supervised Learning for Cryo-ET Reconstruction
Cryo-electron tomography (Cryo-ET) is a powerful tool in structural biology for 3D visualization of cells and biological systems at resolutions sufficient to identify individual proteins in situ. The measurements are collected by tilting the frozen specimen and exposing it to an electron beam of known dosage. As the biological samples are prone to electron damage, the samples can be exposed to only a limited dosage of electrons, leading to noisy and incomplete measurements. Thus, the reconstructions are noisy and incomplete, leading to the missing wedge problem. Currently, self-supervised learning is used to compensate for this issue. This typically involves, for each volume to recover, training a large 3D UNet on the initial noisy reconstruction, leading to large training time and memory requirements. In this work, we exploit the local nature of the forward model to train a lightweight network using only localized data from the measurements. This design provides flexibility in balancing computational and time requirements while reconstructing the volumes with high accuracy. We observe experimentally that this network can work well on unseen datasets, despite using a network trained on a few measurements.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
PCBDet: An Efficient Deep Neural Network Object Detection Architecture for Automatic PCB Component Detection on the Edge
There can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very time-consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component detection, particularly leveraging deep learning. However, deep neural networks typically require high computational resources, possibly limiting their feasibility in real-world use cases in manufacturing, which often involve high-volume and high-throughput detection with constrained edge computing resource availability. As a result of an exploration of efficient deep neural network architectures for this use case, we introduce PCBDet, an attention condenser network design that provides state-of-the-art inference throughput while achieving superior PCB component detection performance compared to other state-of-the-art efficient architecture designs. Experimental results show that PCBDet can achieve up to 2times inference speed-up on an ARM Cortex A72 processor when compared to an EfficientNet-based design while achieving sim2-4\% higher mAP on the FICS-PCB benchmark dataset.
Excellent HER and OER Catalyzing Performance of Se-vacancies in Defects-engineering PtSe2: From Simulation to Experiment
Facing with grave climate change and enormous energy demand, catalyzer gets more and more important due to its significant effect on reducing fossil fuels consumption. Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by water splitting are feasible ways to produce clean sustainable energy. Here we systematically explored atomic structures and related STM images of Se defects in PtSe2. The equilibrium fractions of vacancies under variable conditions were detailly predicted. Besides, we found the vacancies are highly kinetic stable, without recovering or aggregation. The Se vacancies in PtSe2 can dramatically enhance the HER performance, comparing with, even better than Pt(111). Beyond, we firstly revealed that PtSe2 monolayer with Se vacancies is also a good OER catalyst. The excellent bipolar catalysis of Se vacancies were further confirmed by experimental measurements. We produced defective PtSe2 by direct selenization of Pt foil at 773 K using a CVD process. Then we observed the HER and OER performance of defective PtSe2 is much highly efficient than Pt foils by a series of measurements. Our work with compelling theoretical and experimental studies indicates PtSe2 with Se defects is an ideal bipolar candidate for HER and OER.
From two dimensions to wire networks in a dice-lattice Josephson array
We investigate Josephson arrays consisting of a dice-lattice network of superconducting weak links surrounding rhombic plaquettes of proximitized semiconductor. Josephson coupling of the weak links and electron density in the plaquettes are independently controlled by separate electrostatic gates. Applied magnetic flux results in an intricate pattern of switching currents associated with frustration, f. For depleted plaquettes, the switching current is nearly periodic in f, expected for a phase-only description, while occupied plaquettes yield a decreasing envelope of switching currents with increasing f. A model of flux dependence based on ballistic small-area junctions and diffusive large-area plaquettes yields excellent agreement with experiment.
Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10-90 GHz
The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.
Origin of Bright Quantum Emissions with High Debye-Waller factor in Silicon Nitride
Silicon nitride has emerged as a promising photonic platform for integrated single-photon sources, yet the microscopic origin of the recently observed bright quantum emissions remains unclear. Using hybrid density functional theory, we show that the negatively charged N_SiV_N center (NV^{-}) in the C_{1h} configuration exhibits a linearly polarized zero-phonon line (ZPL) at 2.46 eV, with a radiative lifetime of 9.01 ns and a high Debye-Waller (DW) factor of 33%. We further find that the C_{1h} configuration is prone to a pseudo-Jahn-Teller distortion, yielding two symmetrically equivalent defect structures that emit bright, linearly polarized ZPL at 1.80 eV with a lifetime of 10.17 ns and an increased DW factor of 41%. These nitrogen-vacancy-related defects explain the origins of visible quantum emissions, paving the way for deterministic and monolithically integrated silicon-nitride quantum photonics.
Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
Theoretical bounds on the network community profile from low-rank semi-definite programming
We study a new connection between a technical measure called mu-conductance that arises in the study of Markov chains for sampling convex bodies and the network community profile that characterizes size-resolved properties of clusters and communities in social and information networks. The idea of mu-conductance is similar to the traditional graph conductance, but disregards sets with small volume. We derive a sequence of optimization problems including a low-rank semi-definite program from which we can derive a lower bound on the optimal mu-conductance value. These ideas give the first theoretically sound bound on the behavior of the network community profile for a wide range of cluster sizes. The algorithm scales up to graphs with hundreds of thousands of nodes and we demonstrate how our framework validates the predicted structures of real-world graphs.
Oxidation State Dynamics and Emerging Patterns in Magnetite
Magnetite is an important mineral with many interesting applications related to its magnetic, electrical and thermal properties. Typically studied by electronic structure calculations, these methods are unable to capture the complex ion dynamics at relevant temperatures, time and length scales. We present a hybrid Monte Carlo/Molecular Dynamics (MC/MD) method based on iron oxidation state exchange for accurate atomistic modelling of bulk magnetite, magnetite surfaces and nanoparticles that captures the complex ionic dynamics. By comparing oxidation state patterns with those obtained from density functional theory, we confirmed the accuracy of our approach. Lattice distortions leading to the stabilisation of excess charges and a critical surface thickness at which the oxidation states transition from ordered to disordered were observed. This simple yet efficient approach paves the way for elucidating aspects of oxidation state ordering of inverse spinel structures in general and battery materials in particular.
Unbalanced Stückelberg Holographic Superconductors with Backreaction
We numerically investigate some properties of unbalanced St\"{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St\"{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St\"{u}ckelberg's model parameters C_{alpha} and alpha not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of alpha on the amplitude of conductivity fluctuations depends on the magnitude of the both C_{alpha} and deltamu/mu in the electric and thermal conductivity cases. This results in that increasing alpha can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
The Impact of Element Ordering on LM Agent Performance
There has been a surge of interest in language model agents that can navigate virtual environments such as the web or desktop. To navigate such environments, agents benefit from information on the various elements (e.g., buttons, text, or images) present. It remains unclear which element attributes have the greatest impact on agent performance, especially in environments that only provide a graphical representation (i.e., pixels). Here we find that the ordering in which elements are presented to the language model is surprisingly impactful--randomizing element ordering in a webpage degrades agent performance comparably to removing all visible text from an agent's state representation. While a webpage provides a hierarchical ordering of elements, there is no such ordering when parsing elements directly from pixels. Moreover, as tasks become more challenging and models more sophisticated, our experiments suggest that the impact of ordering increases. Finding an effective ordering is non-trivial. We investigate the impact of various element ordering methods in web and desktop environments. We find that dimensionality reduction provides a viable ordering for pixel-only environments. We train a UI element detection model to derive elements from pixels and apply our findings to an agent benchmark--OmniACT--where we only have access to pixels. Our method completes more than two times as many tasks on average relative to the previous state-of-the-art.
PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards
Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) Sustainable Development Goals (SDG), our work leverages non-invasive analysis methods utilizing RGB and hyperspectral imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this paper, we introduce 'PCB-Vision'; a pioneering RGB-hyperspectral printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution hyperspectral data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (IC), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multi-scene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision.
Quasi-periodic pulsations in extreme-ultraviolet brightenings
Context. Extreme-ultraviolet (EUV) observations have revealed small-scale transient brightenings that may share common physical mechanisms with larger-scale solar flares. A notable feature of solar and stellar flares is the presence of quasi-periodic pulsations (QPPs), which are considered a common and potentially intrinsic characteristic. Aims. We investigate the properties of QPPs detected in EUV brightenings, which are considered small-scale flares, and compare their statistical properties with those observed in solar and stellar flares. Methods. We extracted integrated light curves of 22,623 EUV brightenings in two quiet Sun regions observed by the Solar Orbiter/Extreme Ultraviolet Imager and identified QPPs in their light curves using Fourier analysis. Results. Approximately 2.7 % of the EUV brightenings exhibited stationary QPPs. The QPP occurrence rate increased with the surface area, lifetime, and peak brightness of the EUV brightenings. The detected QPP periods ranged from approximately 15 to 260 seconds, which is comparable to the periods observed in solar and stellar flares. Consistent with observations of QPPs in solar and stellar flares, no correlation was found between the QPP period and peak brightness. However, unlike the trend observed in solar flares, no correlation was found between the QPP period and lifetime/length scale. Conclusions. The presence of QPPs in EUV brightenings supports the interpretation that these events may be small-scale manifestations of flares, and the absence of period scaling with loop length further suggests that standing waves may not be the primary driver of QPPs in these events.
Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the R^2 improvement of 33.64% sim 44.20% for edge regression and F1-score gain of 0.9times sim 2.1times for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.
Towards CPU Performance Prediction: New Challenge Benchmark Dataset and Novel Approach
CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at https://github.com/xiaoman-liu/NCPP.
Statistics of X-Ray Polarization Measurements
The polarization of an X-ray beam that produces electrons with velocity components perpendicular to the beam generates an azimuthal distribution of the ejected electrons. We present methods for simulating and for analyzing the angular dependence of electron detections which enable us to derive simple analytical expressions for useful statistical properties of observable data. The derivations are verified by simulations. While we confirm the results of previous work on this topic, we provide an extension needed for analytical treatment of the full range of possible polarization amplitudes.
Notes on Properties of Holographic Matter
Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.
Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite.
PhononBench:A Large-Scale Phonon-Based Benchmark for Dynamical Stability in Crystal Generation
In this work, we introduce PhononBench, the first large-scale benchmark for dynamical stability in AI-generated crystals. Leveraging the recently developed MatterSim interatomic potential, which achieves DFT-level accuracy in phonon predictions across more than 10,000 materials, PhononBench enables efficient large-scale phonon calculations and dynamical-stability analysis for 108,843 crystal structures generated by six leading crystal generation models. PhononBench reveals a widespread limitation of current generative models in ensuring dynamical stability: the average dynamical-stability rate across all generated structures is only 25.83%, with the top-performing model, MatterGen, reaching just 41.0%. Further case studies show that in property-targeted generation-illustrated here by band-gap conditioning with MatterGen--the dynamical-stability rate remains as low as 23.5% even at the optimal band-gap condition of 0.5 eV. In space-group-controlled generation, higher-symmetry crystals exhibit better stability (e.g., cubic systems achieve rates up to 49.2%), yet the average stability across all controlled generations is still only 34.4%. An important additional outcome of this study is the identification of 28,119 crystal structures that are phonon-stable across the entire Brillouin zone, providing a substantial pool of reliable candidates for future materials exploration. By establishing the first large-scale dynamical-stability benchmark, this work systematically highlights the current limitations of crystal generation models and offers essential evaluation criteria and guidance for their future development toward the design and discovery of physically viable materials. All model-generated crystal structures, phonon calculation results, and the high-throughput evaluation workflows developed in PhononBench will be openly released at https://github.com/xqh19970407/PhononBench
Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication
Dielectric materials, with high tunability at microwave frequencies, are key components in the design of microwave communication systems. Dense Ba0.6Sr0.4TiO3 (BST) ceramics, with different grain sizes, were prepared in order to optimise the dielectric tunability via polar nano cluster effects. Dielectric permittivity and loss measurements were carried at both high and low frequencies and were supported by results from X-ray powder diffraction, scanning and transmission electron microscopies, Raman spectroscopy and piezoresponse force microscopy. The concentration of polar nano clusters, whose sizes are found to be in the range 20 to 50 nm, and the dielectric tunability increase with increasing grain size. A novel method for measurement of the microwave tunability in bulk dielectrics is presented. The highest tunability of 32% is achieved in ceramics with an average grain size of 10 um. The tunability of BST ceramics with applied DC field is demonstrated in a prototype small resonant antenna.
Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally tractable formulation, interpreted as neural potential summation, that performs infinite interatomic potential summations in a deeply learned feature space. We then propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer. Compared to an existing Transformer-based model, the proposed model requires only 29.4% of the number of parameters, with minimal modifications to the original Transformer architecture. Despite the architectural simplicity, the proposed method outperforms state-of-the-art methods for various property regression tasks on the Materials Project and JARVIS-DFT datasets.
Prediction of superconducting properties of materials based on machine learning models
The application of superconducting materials is becoming more and more widespread. Traditionally, the discovery of new superconducting materials relies on the experience of experts and a large number of "trial and error" experiments, which not only increases the cost of experiments but also prolongs the period of discovering new superconducting materials. In recent years, machine learning has been increasingly applied to materials science. Based on this, this manuscript proposes the use of XGBoost model to identify superconductors; the first application of deep forest model to predict the critical temperature of superconductors; the first application of deep forest to predict the band gap of materials; and application of a new sub-network model to predict the Fermi energy level of materials. Compared with our known similar literature, all the above algorithms reach state-of-the-art. Finally, this manuscript uses the above models to search the COD public dataset and identify 50 candidate superconducting materials with possible critical temperature greater than 90 K.
