new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization

Deepfake technology has rapidly advanced and poses significant threats to information integrity and trust in online multimedia. While significant progress has been made in detecting deepfakes, the simultaneous manipulation of audio and visual modalities, sometimes at small parts or in subtle ways, presents highly challenging detection scenarios. To address these challenges, we present DiMoDif, an audio-visual deepfake detection framework that leverages the inter-modality differences in machine perception of speech, based on the assumption that in real samples -- in contrast to deepfakes -- visual and audio signals coincide in terms of information. DiMoDif leverages features from deep networks that specialize in visual and audio speech recognition to spot frame-level cross-modal incongruities, and in that way to temporally localize the deepfake forgery. To this end, we devise a hierarchical cross-modal fusion network, integrating adaptive temporal alignment modules and a learned discrepancy mapping layer to explicitly model the subtle differences between visual and audio representations. Then, the detection model is optimized through a composite loss function accounting for frame-level detections and fake intervals localization. DiMoDif outperforms the state-of-the-art on the Deepfake Detection task by 30.5 AUC on the highly challenging AV-Deepfake1M, while it performs exceptionally on FakeAVCeleb and LAV-DF. On the Temporal Forgery Localization task, it outperforms the state-of-the-art by 47.88 AP@0.75 on AV-Deepfake1M, and performs on-par on LAV-DF. Code available at https://github.com/mever-team/dimodif.

  • 2 authors
·
Nov 15, 2024

Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation

Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.

  • 4 authors
·
Aug 28, 2025

IML-ViT: Benchmarking Image Manipulation Localization by Vision Transformer

Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between manipulated and authentic regions, necessitating explicit comparisons between the two areas. With the self-attention mechanism, naturally, the Transformer should be a better candidate to capture artifacts. However, due to limited datasets, there is currently no pure ViT-based approach for IML to serve as a benchmark, and CNNs dominate the entire task. Nevertheless, CNNs suffer from weak long-range and non-semantic modeling. To bridge this gap, based on the fact that artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision that could converge with a small amount of data. We term this simple but effective ViT paradigm IML-ViT, which has significant potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods.Code and models are available at https://github.com/SunnyHaze/IML-ViT.

  • 5 authors
·
Jul 27, 2023

Toward Real-world Text Image Forgery Localization: Structured and Interpretable Data Synthesis

Existing Text Image Forgery Localization (T-IFL) methods often suffer from poor generalization due to the limited scale of real-world datasets and the distribution gap caused by synthetic data that fails to capture the complexity of real-world tampering. To tackle this issue, we propose Fourier Series-based Tampering Synthesis (FSTS), a structured and interpretable framework for synthesizing tampered text images. FSTS first collects 16,750 real-world tampering instances from five representative tampering types, using a structured pipeline that records human-performed editing traces via multi-format logs (e.g., video, PSD, and editing logs). By analyzing these collected parameters and identifying recurring behavioral patterns at both individual and population levels, we formulate a hierarchical modeling framework. Specifically, each individual tampering parameter is represented as a compact combination of basis operation-parameter configurations, while the population-level distribution is constructed by aggregating these behaviors. Since this formulation draws inspiration from the Fourier series, it enables an interpretable approximation using basis functions and their learned weights. By sampling from this modeled distribution, FSTS synthesizes diverse and realistic training data that better reflect real-world forgery traces. Extensive experiments across four evaluation protocols demonstrate that models trained with FSTS data achieve significantly improved generalization on real-world datasets. Dataset is available at https://github.com/ZeqinYu/FSTS{Project Page}.

  • 6 authors
·
Nov 16, 2025

UAL-Bench: The First Comprehensive Unusual Activity Localization Benchmark

Localizing unusual activities, such as human errors or surveillance incidents, in videos holds practical significance. However, current video understanding models struggle with localizing these unusual events likely because of their insufficient representation in models' pretraining datasets. To explore foundation models' capability in localizing unusual activity, we introduce UAL-Bench, a comprehensive benchmark for unusual activity localization, featuring three video datasets: UAG-OOPS, UAG-SSBD, UAG-FunQA, and an instruction-tune dataset: OOPS-UAG-Instruct, to improve model capabilities. UAL-Bench evaluates three approaches: Video-Language Models (Vid-LLMs), instruction-tuned Vid-LLMs, and a novel integration of Vision-Language Models and Large Language Models (VLM-LLM). Our results show the VLM-LLM approach excels in localizing short-span unusual events and predicting their onset (start time) more accurately than Vid-LLMs. We also propose a new metric, R@1, TD <= p, to address limitations in existing evaluation methods. Our findings highlight the challenges posed by long-duration videos, particularly in autism diagnosis scenarios, and the need for further advancements in localization techniques. Our work not only provides a benchmark for unusual activity localization but also outlines the key challenges for existing foundation models, suggesting future research directions on this important task.

  • 5 authors
·
Oct 1, 2024

FakeLocator: Robust Localization of GAN-Based Face Manipulations

Full face synthesis and partial face manipulation by virtue of the generative adversarial networks (GANs) and its variants have raised wide public concerns. In the multi-media forensics area, detecting and ultimately locating the image forgery has become an imperative task. In this work, we investigate the architecture of existing GAN-based face manipulation methods and observe that the imperfection of upsampling methods therewithin could be served as an important asset for GAN-synthesized fake image detection and forgery localization. Based on this basic observation, we have proposed a novel approach, termed FakeLocator, to obtain high localization accuracy, at full resolution, on manipulated facial images. To the best of our knowledge, this is the very first attempt to solve the GAN-based fake localization problem with a gray-scale fakeness map that preserves more information of fake regions. To improve the universality of FakeLocator across multifarious facial attributes, we introduce an attention mechanism to guide the training of the model. To improve the universality of FakeLocator across different DeepFake methods, we propose partial data augmentation and single sample clustering on the training images. Experimental results on popular FaceForensics++, DFFD datasets and seven different state-of-the-art GAN-based face generation methods have shown the effectiveness of our method. Compared with the baselines, our method performs better on various metrics. Moreover, the proposed method is robust against various real-world facial image degradations such as JPEG compression, low-resolution, noise, and blur.

  • 5 authors
·
Jan 27, 2020

V2P: From Background Suppression to Center Peaking for Robust GUI Grounding Task

Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform labeling fails to distinguish between center and edges of the target UI element, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.3% and 50.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further confirm each component's contribution, highlighting V2P's generalizability for precise GUI grounding tasks.

  • 6 authors
·
Aug 19, 2025

So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection

Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.

  • 11 authors
·
May 24, 2025

V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking

Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~fig:main_results_charts). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.

  • 9 authors
·
Jan 11

Referring Image Segmentation Using Text Supervision

Existing Referring Image Segmentation (RIS) methods typically require expensive pixel-level or box-level annotations for supervision. In this paper, we observe that the referring texts used in RIS already provide sufficient information to localize the target object. Hence, we propose a novel weakly-supervised RIS framework to formulate the target localization problem as a classification process to differentiate between positive and negative text expressions. While the referring text expressions for an image are used as positive expressions, the referring text expressions from other images can be used as negative expressions for this image. Our framework has three main novelties. First, we propose a bilateral prompt method to facilitate the classification process, by harmonizing the domain discrepancy between visual and linguistic features. Second, we propose a calibration method to reduce noisy background information and improve the correctness of the response maps for target object localization. Third, we propose a positive response map selection strategy to generate high-quality pseudo-labels from the enhanced response maps, for training a segmentation network for RIS inference. For evaluation, we propose a new metric to measure localization accuracy. Experiments on four benchmarks show that our framework achieves promising performances to existing fully-supervised RIS methods while outperforming state-of-the-art weakly-supervised methods adapted from related areas. Code is available at https://github.com/fawnliu/TRIS.

  • 8 authors
·
Aug 28, 2023

TDoA-Based Self-Supervised Channel Charting with NLoS Mitigation

Channel Charting (CC) has emerged as a promising framework for data-driven radio localization, yet existing approaches often struggle to scale globally and to handle the distortions introduced by non-line-of-sight (NLoS) conditions. In this work, we propose a novel CC method that leverages Channel Impulse Response (CIR) data enriched with practical features such as Time Difference of Arrival (TDoA) and Transmission Reception Point (TRP) locations, enabling a self-supervised localization function on a global scale. The proposed framework is further enhanced with short-interval User Equipment (UE) displacement measurements, which improve the continuity and robustness of the learned positioning function. Our algorithm incorporates a mechanism to identify and mask NLoS-induced noisy measurements, leading to significant performance gains. We present the evaluations of our proposed models in a real 5G testbed and benchmarked against centimeter-accurate Real-Time Kinematic (RTK) positioning, in an O-RAN--based 5G network by OpenAirInterface (OAI) software at EURECOM. It demonstrated outperforming results against the state-of-the-art semi-supervised and self-supervised CC approaches in a real-world scenario. The results show localization accuracies of 2-4 meters in 90% of cases, across a range of NLoS ratios. Furthermore, we provide public datasets of CIR recordings, along with the true position labels used in this paper's evaluation.

  • 4 authors
·
Oct 9, 2025

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

The rapid progress of photorealistic synthesis techniques has reached at a critical point where the boundary between real and manipulated images starts to blur. Thus, benchmarking and advancing digital forgery analysis have become a pressing issue. However, existing face forgery datasets either have limited diversity or only support coarse-grained analysis. To counter this emerging threat, we construct the ForgeryNet dataset, an extremely large face forgery dataset with unified annotations in image- and video-level data across four tasks: 1) Image Forgery Classification, including two-way (real / fake), three-way (real / fake with identity-replaced forgery approaches / fake with identity-remained forgery approaches), and n-way (real and 15 respective forgery approaches) classification. 2) Spatial Forgery Localization, which segments the manipulated area of fake images compared to their corresponding source real images. 3) Video Forgery Classification, which re-defines the video-level forgery classification with manipulated frames in random positions. This task is important because attackers in real world are free to manipulate any target frame. and 4) Temporal Forgery Localization, to localize the temporal segments which are manipulated. ForgeryNet is by far the largest publicly available deep face forgery dataset in terms of data-scale (2.9 million images, 221,247 videos), manipulations (7 image-level approaches, 8 video-level approaches), perturbations (36 independent and more mixed perturbations) and annotations (6.3 million classification labels, 2.9 million manipulated area annotations and 221,247 temporal forgery segment labels). We perform extensive benchmarking and studies of existing face forensics methods and obtain several valuable observations.

  • 9 authors
·
Mar 9, 2021

LITA: Language Instructed Temporal-Localization Assistant

There has been tremendous progress in multimodal Large Language Models (LLMs). Recent works have extended these models to video input with promising instruction following capabilities. However, an important missing piece is temporal localization. These models cannot accurately answer the "When?" questions. We identify three key aspects that limit their temporal localization capabilities: (i) time representation, (ii) architecture, and (iii) data. We address these shortcomings by proposing Language Instructed Temporal-Localization Assistant (LITA) with the following features: (1) We introduce time tokens that encode timestamps relative to the video length to better represent time in videos. (2) We introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution. (3) We emphasize temporal localization data for LITA. In addition to leveraging existing video datasets with timestamps, we propose a new task, Reasoning Temporal Localization (RTL), along with the dataset, ActivityNet-RTL, for learning and evaluating this task. Reasoning temporal localization requires both the reasoning and temporal localization of Video LLMs. LITA demonstrates strong performance on this challenging task, nearly doubling the temporal mean intersection-over-union (mIoU) of baselines. In addition, we show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs, including a 36% relative improvement of Temporal Understanding. Code is available at: https://github.com/NVlabs/LITA

  • 7 authors
·
Mar 27, 2024 1

RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization

Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.

  • 7 authors
·
Aug 12, 2025

PhyDetEx: Detecting and Explaining the Physical Plausibility of T2V Models

Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a PID (Physical Implausibility Detection) dataset, which consists of a test split of 500 manually annotated videos and a train split of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely PhyDetEx, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at https://github.com/Zeqing-Wang/PhyDetEx{https://github.com/Zeqing-Wang/PhyDetEx}.

  • 3 authors
·
Dec 1, 2025

PEEKABOO: Hiding parts of an image for unsupervised object localization

Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information such as the appearance, type and number of objects, as well as the lack of labeled object classes typically available in supervised settings. While recent approaches to unsupervised object localization have demonstrated significant progress by leveraging self-supervised visual representations, they often require computationally intensive training processes, resulting in high resource demands in terms of computation, learnable parameters, and data. They also lack explicit modeling of visual context, potentially limiting their accuracy in object localization. To tackle these challenges, we propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization by learning context-based representations at both the pixel- and shape-level of the localized objects through image masking. The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision. The experimental results, both quantitative and qualitative, across various benchmark datasets, demonstrate the simplicity, effectiveness and competitive performance of our approach compared to state-of-the-art methods in both single object discovery and unsupervised salient object detection tasks. Code and pre-trained models are available at: https://github.com/hasibzunair/peekaboo

  • 2 authors
·
Jul 24, 2024

FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization

Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories. Existing approaches typically rely on the robust generalization capabilities of multimodal pretrained models, computing similarities between manually crafted textual features representing "normal" or "abnormal" semantics and image features to detect anomalies and localize anomalous patches. However, the generic descriptions of "abnormal" often fail to precisely match diverse types of anomalies across different object categories. Additionally, computing feature similarities for single patches struggles to pinpoint specific locations of anomalies with various sizes and scales. To address these issues, we propose a novel ZSAD method called FiLo, comprising two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High-Quality Localization (HQ-Loc). FG-Des introduces fine-grained anomaly descriptions for each category using Large Language Models (LLMs) and employs adaptively learned textual templates to enhance the accuracy and interpretability of anomaly detection. HQ-Loc, utilizing Grounding DINO for preliminary localization, position-enhanced text prompts, and Multi-scale Multi-shape Cross-modal Interaction (MMCI) module, facilitates more accurate localization of anomalies of different sizes and shapes. Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization, achieving state-of-the-art performance with an image-level AUC of 83.9% and a pixel-level AUC of 95.9% on the VisA dataset. Code is available at https://github.com/CASIA-IVA-Lab/FiLo.

  • 7 authors
·
Apr 21, 2024

On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines

Reliable usage of object detectors require them to be calibrated -- a crucial problem that requires careful attention. Recent approaches towards this involve (1) designing new loss functions to obtain calibrated detectors by training them from scratch, and (2) post-hoc Temperature Scaling (TS) that learns to scale the likelihood of a trained detector to output calibrated predictions. These approaches are then evaluated based on a combination of Detection Expected Calibration Error (D-ECE) and Average Precision. In this work, via extensive analysis and insights, we highlight that these recent evaluation frameworks, evaluation metrics, and the use of TS have notable drawbacks leading to incorrect conclusions. As a step towards fixing these issues, we propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors. We also tailor efficient and easy-to-use post-hoc calibration approaches such as Platt Scaling and Isotonic Regression specifically for object detection task. Contrary to the common notion, our experiments show that once designed and evaluated properly, post-hoc calibrators, which are extremely cheap to build and use, are much more powerful and effective than the recent train-time calibration methods. To illustrate, D-DETR with our post-hoc Isotonic Regression calibrator outperforms the recent train-time state-of-the-art calibration method Cal-DETR by more than 7 D-ECE on the COCO dataset. Additionally, we propose improved versions of the recently proposed Localization-aware ECE and show the efficacy of our method on these metrics as well. Code is available at: https://github.com/fiveai/detection_calibration.

  • 4 authors
·
May 30, 2024

U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous Driving via Differentiable Association and Registration

Accurate localization using visual information is a critical yet challenging task, especially in urban environments where nearby buildings and construction sites significantly degrade GNSS (Global Navigation Satellite System) signal quality. This issue underscores the importance of visual localization techniques in scenarios where GNSS signals are unreliable. This paper proposes U-ViLAR, a novel uncertainty-aware visual localization framework designed to address these challenges while enabling adaptive localization using high-definition (HD) maps or navigation maps. Specifically, our method first extracts features from the input visual data and maps them into Bird's-Eye-View (BEV) space to enhance spatial consistency with the map input. Subsequently, we introduce: a) Perceptual Uncertainty-guided Association, which mitigates errors caused by perception uncertainty, and b) Localization Uncertainty-guided Registration, which reduces errors introduced by localization uncertainty. By effectively balancing the coarse-grained large-scale localization capability of association with the fine-grained precise localization capability of registration, our approach achieves robust and accurate localization. Experimental results demonstrate that our method achieves state-of-the-art performance across multiple localization tasks. Furthermore, our model has undergone rigorous testing on large-scale autonomous driving fleets and has demonstrated stable performance in various challenging urban scenarios.

  • 14 authors
·
Jul 6, 2025

Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization

Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.

  • 8 authors
·
Mar 5, 2024

Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework

Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.

  • 9 authors
·
Feb 19, 2025 2

Understanding Hallucinations in Diffusion Models through Mode Interpolation

Colloquially speaking, image generation models based upon diffusion processes are frequently said to exhibit "hallucinations," samples that could never occur in the training data. But where do such hallucinations come from? In this paper, we study a particular failure mode in diffusion models, which we term mode interpolation. Specifically, we find that diffusion models smoothly "interpolate" between nearby data modes in the training set, to generate samples that are completely outside the support of the original training distribution; this phenomenon leads diffusion models to generate artifacts that never existed in real data (i.e., hallucinations). We systematically study the reasons for, and the manifestation of this phenomenon. Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss landscape in the diffusion model's decoder leads to a region where any smooth approximation will cause such hallucinations. Through experiments on artificial datasets with various shapes, we show how hallucination leads to the generation of combinations of shapes that never existed. Finally, we show that diffusion models in fact know when they go out of support and hallucinate. This is captured by the high variance in the trajectory of the generated sample towards the final few backward sampling process. Using a simple metric to capture this variance, we can remove over 95% of hallucinations at generation time while retaining 96% of in-support samples. We conclude our exploration by showing the implications of such hallucination (and its removal) on the collapse (and stabilization) of recursive training on synthetic data with experiments on MNIST and 2D Gaussians dataset. We release our code at https://github.com/locuslab/diffusion-model-hallucination.

  • 4 authors
·
Jun 13, 2024 1

GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization

Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth. This task has considerable challenges due to immense variation in geographic landscapes. The image-to-image retrieval-based approaches fail to solve this problem on a global scale as it is not feasible to construct a large gallery of images covering the entire world. Instead, existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task. However, their performance is limited by the predefined classes and often results in inaccurate localizations when an image's location significantly deviates from its class center. To overcome these limitations, we propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations. GeoCLIP's location encoder models the Earth as a continuous function by employing positional encoding through random Fourier features and constructing a hierarchical representation that captures information at varying resolutions to yield a semantically rich high-dimensional feature suitable to use even beyond geo-localization. To the best of our knowledge, this is the first work employing GPS encoding for geo-localization. We demonstrate the efficacy of our method via extensive experiments and ablations on benchmark datasets. We achieve competitive performance with just 20% of training data, highlighting its effectiveness even in limited-data settings. Furthermore, we qualitatively demonstrate geo-localization using a text query by leveraging CLIP backbone of our image encoder. The project webpage is available at: https://vicentevivan.github.io/GeoCLIP

  • 3 authors
·
Sep 27, 2023

Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective

With recent generative models facilitating photo-realistic image synthesis, the proliferation of synthetic images has also engendered certain negative impacts on social platforms, thereby raising an urgent imperative to develop effective detectors. Current synthetic image detection (SID) pipelines are primarily dedicated to crafting universal artifact features, accompanied by an oversight about SID training paradigm. In this paper, we re-examine the SID problem and identify two prevalent biases in current training paradigms, i.e., weakened artifact features and overfitted artifact features. Meanwhile, we discover that the imaging mechanism of synthetic images contributes to heightened local correlations among pixels, suggesting that detectors should be equipped with local awareness. In this light, we propose SAFE, a lightweight and effective detector with three simple image transformations. Firstly, for weakened artifact features, we substitute the down-sampling operator with the crop operator in image pre-processing to help circumvent artifact distortion. Secondly, for overfitted artifact features, we include ColorJitter and RandomRotation as additional data augmentations, to help alleviate irrelevant biases from color discrepancies and semantic differences in limited training samples. Thirdly, for local awareness, we propose a patch-based random masking strategy tailored for SID, forcing the detector to focus on local regions at training. Comparative experiments are conducted on an open-world dataset, comprising synthetic images generated by 26 distinct generative models. Our pipeline achieves a new state-of-the-art performance, with remarkable improvements of 4.5% in accuracy and 2.9% in average precision against existing methods. Our code is available at: https://github.com/Ouxiang-Li/SAFE.

  • 6 authors
·
Aug 13, 2024

World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty

Recent advances in generative video models have led to significant breakthroughs in high-fidelity video synthesis, specifically in controllable video generation where the generated video is conditioned on text and action inputs, e.g., in instruction-guided video editing and world modeling in robotics. Despite these exceptional capabilities, controllable video models often hallucinate - generating future video frames that are misaligned with physical reality - which raises serious concerns in many tasks such as robot policy evaluation and planning. However, state-of-the-art video models lack the ability to assess and express their confidence, impeding hallucination mitigation. To rigorously address this challenge, we propose C3, an uncertainty quantification (UQ) method for training continuous-scale calibrated controllable video models for dense confidence estimation at the subpatch level, precisely localizing the uncertainty in each generated video frame. Our UQ method introduces three core innovations to empower video models to estimate their uncertainty. First, our method develops a novel framework that trains video models for correctness and calibration via strictly proper scoring rules. Second, we estimate the video model's uncertainty in latent space, avoiding training instability and prohibitive training costs associated with pixel-space approaches. Third, we map the dense latent-space uncertainty to interpretable pixel-level uncertainty in the RGB space for intuitive visualization, providing high-resolution uncertainty heatmaps that identify untrustworthy regions. Through extensive experiments on large-scale robot learning datasets (Bridge and DROID) and real-world evaluations, we demonstrate that our method not only provides calibrated uncertainty estimates within the training distribution, but also enables effective out-of-distribution detection.

  • 5 authors
·
Dec 5, 2025 2

Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection

Recently, the proliferation of highly realistic synthetic images, facilitated through a variety of GANs and Diffusions, has significantly heightened the susceptibility to misuse. While the primary focus of deepfake detection has traditionally centered on the design of detection algorithms, an investigative inquiry into the generator architectures has remained conspicuously absent in recent years. This paper contributes to this lacuna by rethinking the architectures of CNN-based generators, thereby establishing a generalized representation of synthetic artifacts. Our findings illuminate that the up-sampling operator can, beyond frequency-based artifacts, produce generalized forgery artifacts. In particular, the local interdependence among image pixels caused by upsampling operators is significantly demonstrated in synthetic images generated by GAN or diffusion. Building upon this observation, we introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations. A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by 28 distinct generative models. This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable 11.6\% improvement over existing methods. The code is available at https://github.com/chuangchuangtan/NPR-DeepfakeDetection.

  • 7 authors
·
Dec 16, 2023

Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation

With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.

  • 10 authors
·
Mar 19, 2025 3

Evading Detection Actively: Toward Anti-Forensics against Forgery Localization

Anti-forensics seeks to eliminate or conceal traces of tampering artifacts. Typically, anti-forensic methods are designed to deceive binary detectors and persuade them to misjudge the authenticity of an image. However, to the best of our knowledge, no attempts have been made to deceive forgery detectors at the pixel level and mis-locate forged regions. Traditional adversarial attack methods cannot be directly used against forgery localization due to the following defects: 1) they tend to just naively induce the target forensic models to flip their pixel-level pristine or forged decisions; 2) their anti-forensics performance tends to be severely degraded when faced with the unseen forensic models; 3) they lose validity once the target forensic models are retrained with the anti-forensics images generated by them. To tackle the three defects, we propose SEAR (Self-supErvised Anti-foRensics), a novel self-supervised and adversarial training algorithm that effectively trains deep-learning anti-forensic models against forgery localization. SEAR sets a pretext task to reconstruct perturbation for self-supervised learning. In adversarial training, SEAR employs a forgery localization model as a supervisor to explore tampering features and constructs a deep-learning concealer to erase corresponding traces. We have conducted largescale experiments across diverse datasets. The experimental results demonstrate that, through the combination of self-supervised learning and adversarial learning, SEAR successfully deceives the state-of-the-art forgery localization methods, as well as tackle the three defects regarding traditional adversarial attack methods mentioned above.

  • 6 authors
·
Oct 15, 2023

AEGIS: Authenticity Evaluation Benchmark for AI-Generated Video Sequences

Recent advances in AI-generated content have fueled the rise of highly realistic synthetic videos, posing severe risks to societal trust and digital integrity. Existing benchmarks for video authenticity detection typically suffer from limited realism, insufficient scale, and inadequate complexity, failing to effectively evaluate modern vision-language models against sophisticated forgeries. To address this critical gap, we introduce AEGIS, a novel large-scale benchmark explicitly targeting the detection of hyper-realistic and semantically nuanced AI-generated videos. AEGIS comprises over 10,000 rigorously curated real and synthetic videos generated by diverse, state-of-the-art generative models, including Stable Video Diffusion, CogVideoX-5B, KLing, and Sora, encompassing open-source and proprietary architectures. In particular, AEGIS features specially constructed challenging subsets enhanced with robustness evaluation. Furthermore, we provide multimodal annotations spanning Semantic-Authenticity Descriptions, Motion Features, and Low-level Visual Features, facilitating authenticity detection and supporting downstream tasks such as multimodal fusion and forgery localization. Extensive experiments using advanced vision-language models demonstrate limited detection capabilities on the most challenging subsets of AEGIS, highlighting the dataset's unique complexity and realism beyond the current generalization capabilities of existing models. In essence, AEGIS establishes an indispensable evaluation benchmark, fundamentally advancing research toward developing genuinely robust, reliable, broadly generalizable video authenticity detection methodologies capable of addressing real-world forgery threats. Our dataset is available on https://huggingface.co/datasets/Clarifiedfish/AEGIS.

  • 3 authors
·
Aug 14, 2025

A Critical Assessment of Visual Sound Source Localization Models Including Negative Audio

The task of Visual Sound Source Localization (VSSL) involves identifying the location of sound sources in visual scenes, integrating audio-visual data for enhanced scene understanding. Despite advancements in state-of-the-art (SOTA) models, we observe three critical flaws: i) The evaluation of the models is mainly focused in sounds produced by objects that are visible in the image, ii) The evaluation often assumes a prior knowledge of the size of the sounding object, and iii) No universal threshold for localization in real-world scenarios is established, as previous approaches only consider positive examples without accounting for both positive and negative cases. In this paper, we introduce a novel test set and metrics designed to complete the current standard evaluation of VSSL models by testing them in scenarios where none of the objects in the image corresponds to the audio input, i.e. a negative audio. We consider three types of negative audio: silence, noise and offscreen. Our analysis reveals that numerous SOTA models fail to appropriately adjust their predictions based on audio input, suggesting that these models may not be leveraging audio information as intended. Additionally, we provide a comprehensive analysis of the range of maximum values in the estimated audio-visual similarity maps, in both positive and negative audio cases, and show that most of the models are not discriminative enough, making them unfit to choose a universal threshold appropriate to perform sound localization without any a priori information of the sounding object, that is, object size and visibility.

  • 3 authors
·
Oct 1, 2024

Toward Real Text Manipulation Detection: New Dataset and New Solution

With the surge in realistic text tampering, detecting fraudulent text in images has gained prominence for maintaining information security. However, the high costs associated with professional text manipulation and annotation limit the availability of real-world datasets, with most relying on synthetic tampering, which inadequately replicates real-world tampering attributes. To address this issue, we present the Real Text Manipulation (RTM) dataset, encompassing 14,250 text images, which include 5,986 manually and 5,258 automatically tampered images, created using a variety of techniques, alongside 3,006 unaltered text images for evaluating solution stability. Our evaluations indicate that existing methods falter in text forgery detection on the RTM dataset. We propose a robust baseline solution featuring a Consistency-aware Aggregation Hub and a Gated Cross Neighborhood-attention Fusion module for efficient multi-modal information fusion, supplemented by a Tampered-Authentic Contrastive Learning module during training, enriching feature representation distinction. This framework, extendable to other dual-stream architectures, demonstrated notable localization performance improvements of 7.33% and 6.38% on manual and overall manipulations, respectively. Our contributions aim to propel advancements in real-world text tampering detection. Code and dataset will be made available at https://github.com/DrLuo/RTM

  • 7 authors
·
Dec 11, 2023

FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models

The rapid development of generative AI is a double-edged sword, which not only facilitates content creation but also makes image manipulation easier and more difficult to detect. Although current image forgery detection and localization (IFDL) methods are generally effective, they tend to face two challenges: 1) black-box nature with unknown detection principle, 2) limited generalization across diverse tampering methods (e.g., Photoshop, DeepFake, AIGC-Editing). To address these issues, we propose the explainable IFDL task and design FakeShield, a multi-modal framework capable of evaluating image authenticity, generating tampered region masks, and providing a judgment basis based on pixel-level and image-level tampering clues. Additionally, we leverage GPT-4o to enhance existing IFDL datasets, creating the Multi-Modal Tamper Description dataSet (MMTD-Set) for training FakeShield's tampering analysis capabilities. Meanwhile, we incorporate a Domain Tag-guided Explainable Forgery Detection Module (DTE-FDM) and a Multi-modal Forgery Localization Module (MFLM) to address various types of tamper detection interpretation and achieve forgery localization guided by detailed textual descriptions. Extensive experiments demonstrate that FakeShield effectively detects and localizes various tampering techniques, offering an explainable and superior solution compared to previous IFDL methods.

  • 6 authors
·
Oct 3, 2024

ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization

The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.

  • 9 authors
·
May 16, 2025

No Pixel Left Behind: A Detail-Preserving Architecture for Robust High-Resolution AI-Generated Image Detection

The rapid growth of high-resolution, meticulously crafted AI-generated images poses a significant challenge to existing detection methods, which are often trained and evaluated on low-resolution, automatically generated datasets that do not align with the complexities of high-resolution scenarios. A common practice is to resize or center-crop high-resolution images to fit standard network inputs. However, without full coverage of all pixels, such strategies risk either obscuring subtle, high-frequency artifacts or discarding information from uncovered regions, leading to input information loss. In this paper, we introduce the High-Resolution Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses features from multiple full-resolution local tiles with a down-sampled global view of the image. These local features are aggregated and fused with global representations for final prediction, ensuring that native-resolution details are preserved and utilized for detection. To enhance robustness against challenges such as localized AI manipulations and compression, we introduce Token-wise Forgery Localization (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor Estimation (QFE) module to disentangle generative artifacts from compression noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-50K, a new challenging benchmark consisting of 50,568 images with up to 64 megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-art, increasing accuracy by over 13% on the challenging Chameleon dataset and 10% on our HiRes-50K.

  • 10 authors
·
Aug 24, 2025

LDL: Line Distance Functions for Panoramic Localization

We introduce LDL, a fast and robust algorithm that localizes a panorama to a 3D map using line segments. LDL focuses on the sparse structural information of lines in the scene, which is robust to illumination changes and can potentially enable efficient computation. While previous line-based localization approaches tend to sacrifice accuracy or computation time, our method effectively observes the holistic distribution of lines within panoramic images and 3D maps. Specifically, LDL matches the distribution of lines with 2D and 3D line distance functions, which are further decomposed along principal directions of lines to increase the expressiveness. The distance functions provide coarse pose estimates by comparing the distributional information, where the poses are further optimized using conventional local feature matching. As our pipeline solely leverages line geometry and local features, it does not require costly additional training of line-specific features or correspondence matching. Nevertheless, our method demonstrates robust performance on challenging scenarios including object layout changes, illumination shifts, and large-scale scenes, while exhibiting fast pose search terminating within a matter of milliseconds. We thus expect our method to serve as a practical solution for line-based localization, and complement the well-established point-based paradigm. The code for LDL is available through the following link: https://github.com/82magnolia/panoramic-localization.

  • 4 authors
·
Aug 26, 2023

A Kernel Method to Nonlinear Location Estimation with RSS-based Fingerprint

This paper presents a nonlinear location estimation to infer the position of a user holding a smartphone. We consider a large location with M number of grid points, each grid point is labeled with a unique fingerprint consisting of the received signal strength (RSS) values measured from N number of Bluetooth Low Energy (BLE) beacons. Given the fingerprint observed by the smartphone, the user's current location can be estimated by finding the top-k similar fingerprints from the list of fingerprints registered in the database. Besides the environmental factors, the dynamicity in holding the smartphone is another source to the variation in fingerprint measurements, yet there are not many studies addressing the fingerprint variability due to dynamic smartphone positions held by human hands during online detection. To this end, we propose a nonlinear location estimation using the kernel method. Specifically, our proposed method comprises of two steps: 1) a beacon selection strategy to select a subset of beacons that is insensitive to the subtle change of holding positions, and 2) a kernel method to compute the similarity between this subset of observed signals and all the fingerprints registered in the database. The experimental results based on large-scale data collected in a complex building indicate a substantial performance gain of our proposed approach in comparison to state-of-the-art methods. The dataset consisting of the signal information collected from the beacons is available online.

  • 4 authors
·
Apr 7, 2022

TopNet: Transformer-based Object Placement Network for Image Compositing

We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.

  • 6 authors
·
Apr 6, 2023

AnyPattern: Towards In-context Image Copy Detection

This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen rightarrow unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns (90 for training and 10 for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel tamper patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization (+26.66 % mu AP), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of +16.75 % mu AP), and (3) AnyPattern enables in-context ICD, i.e. without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. The project (including the proposed dataset AnyPattern and the code for ImageStacker) is publicly available at https://anypattern.github.io under the MIT Licence.

  • 4 authors
·
Apr 21, 2024

Test-Time Reinforcement Learning for GUI Grounding via Region Consistency

Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.

  • 8 authors
·
Aug 7, 2025 2

Learning Human-Perceived Fakeness in AI-Generated Videos via Multimodal LLMs

Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.

PrincetonUniversity Princeton University
·
Sep 26, 2025 2

Teaching VLMs to Localize Specific Objects from In-context Examples

Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks, including image recognition, video understanding, and Visual Question Answering (VQA) when explicitly trained for these tasks. Despite these advances, we find that current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context. In this work, we focus on the task of few-shot personalized localization, where a model is given a small set of annotated images (in-context examples) -- each with a category label and bounding box -- and is tasked with localizing the same object type in a query image. To provoke personalized localization abilities in models, we present a data-centric solution that fine-tunes them using carefully curated data from video object tracking datasets. By leveraging sequences of frames tracking the same object across multiple shots, we simulate instruction-tuning dialogues that promote context awareness. To reinforce this, we introduce a novel regularization technique that replaces object labels with pseudo-names, ensuring the model relies on visual context rather than prior knowledge. Our method significantly enhances few-shot localization performance without sacrificing generalization, as demonstrated on several benchmarks tailored to personalized localization. This work is the first to explore and benchmark personalized few-shot localization for VLMs, laying a foundation for future research in context-driven vision-language applications. The code for our project is available at https://github.com/SivanDoveh/IPLoc

  • 12 authors
·
Nov 20, 2024

Just Dance with π! A Poly-modal Inductor for Weakly-supervised Video Anomaly Detection

Weakly-supervised methods for video anomaly detection (VAD) are conventionally based merely on RGB spatio-temporal features, which continues to limit their reliability in real-world scenarios. This is due to the fact that RGB-features are not sufficiently distinctive in setting apart categories such as shoplifting from visually similar events. Therefore, towards robust complex real-world VAD, it is essential to augment RGB spatio-temporal features by additional modalities. Motivated by this, we introduce the Poly-modal Induced framework for VAD: "PI-VAD", a novel approach that augments RGB representations by five additional modalities. Specifically, the modalities include sensitivity to fine-grained motion (Pose), three dimensional scene and entity representation (Depth), surrounding objects (Panoptic masks), global motion (optical flow), as well as language cues (VLM). Each modality represents an axis of a polygon, streamlined to add salient cues to RGB. PI-VAD includes two plug-in modules, namely Pseudo-modality Generation module and Cross Modal Induction module, which generate modality-specific prototypical representation and, thereby, induce multi-modal information into RGB cues. These modules operate by performing anomaly-aware auxiliary tasks and necessitate five modality backbones -- only during training. Notably, PI-VAD achieves state-of-the-art accuracy on three prominent VAD datasets encompassing real-world scenarios, without requiring the computational overhead of five modality backbones at inference.

  • 8 authors
·
May 19, 2025

Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?

Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: (i) Immersive ASMR video-audio sources. Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. (ii) Peer-Review evaluation. An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56\% accuracy (random 50\%), far below that of human experts (81.25\%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.

  • 9 authors
·
Dec 15, 2025 2

Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization

Existing approaches to drone visual geo-localization predominantly adopt the image-based setting, where a single drone-view snapshot is matched with images from other platforms. Such task formulation, however, underutilizes the inherent video output of the drone and is sensitive to occlusions and viewpoint disparity. To address these limitations, we formulate a new video-based drone geo-localization task and propose the Video2BEV paradigm. This paradigm transforms the video into a Bird's Eye View (BEV), simplifying the subsequent inter-platform matching process. In particular, we employ Gaussian Splatting to reconstruct a 3D scene and obtain the BEV projection. Different from the existing transform methods, \eg, polar transform, our BEVs preserve more fine-grained details without significant distortion. To facilitate the discriminative intra-platform representation learning, our Video2BEV paradigm also incorporates a diffusion-based module for generating hard negative samples. To validate our approach, we introduce UniV, a new video-based geo-localization dataset that extends the image-based University-1652 dataset. UniV features flight paths at 30^circ and 45^circ elevation angles with increased frame rates of up to 10 frames per second (FPS). Extensive experiments on the UniV dataset show that our Video2BEV paradigm achieves competitive recall rates and outperforms conventional video-based methods. Compared to other competitive methods, our proposed approach exhibits robustness at lower elevations with more occlusions.

  • 4 authors
·
Nov 19, 2024

Sequential Voting with Relational Box Fields for Active Object Detection

A key component of understanding hand-object interactions is the ability to identify the active object -- the object that is being manipulated by the human hand. In order to accurately localize the active object, any method must reason using information encoded by each image pixel, such as whether it belongs to the hand, the object, or the background. To leverage each pixel as evidence to determine the bounding box of the active object, we propose a pixel-wise voting function. Our pixel-wise voting function takes an initial bounding box as input and produces an improved bounding box of the active object as output. The voting function is designed so that each pixel inside of the input bounding box votes for an improved bounding box, and the box with the majority vote is selected as the output. We call the collection of bounding boxes generated inside of the voting function, the Relational Box Field, as it characterizes a field of bounding boxes defined in relationship to the current bounding box. While our voting function is able to improve the bounding box of the active object, one round of voting is typically not enough to accurately localize the active object. Therefore, we repeatedly apply the voting function to sequentially improve the location of the bounding box. However, since it is known that repeatedly applying a one-step predictor (i.e., auto-regressive processing with our voting function) can cause a data distribution shift, we mitigate this issue using reinforcement learning (RL). We adopt standard RL to learn the voting function parameters and show that it provides a meaningful improvement over a standard supervised learning approach. We perform experiments on two large-scale datasets: 100DOH and MECCANO, improving AP50 performance by 8% and 30%, respectively, over the state of the art.

  • 3 authors
·
Oct 21, 2021

Rank-DETR for High Quality Object Detection

Modern detection transformers (DETRs) use a set of object queries to predict a list of bounding boxes, sort them by their classification confidence scores, and select the top-ranked predictions as the final detection results for the given input image. A highly performant object detector requires accurate ranking for the bounding box predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from less accurate localization quality due to the misalignment between classification scores and localization accuracy, thus impeding the construction of high-quality detectors. In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs, combinedly called Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design that can prompt positive predictions and suppress the negative ones to ensure lower false positive rates, as well as (ii) a rank-oriented loss function and matching cost design that prioritizes predictions of more accurate localization accuracy during ranking to boost the AP under high IoU thresholds. We apply our method to improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report strong COCO object detection results when using different backbones such as ResNet-50, Swin-T, and Swin-L, demonstrating the effectiveness of our approach. Code is available at https://github.com/LeapLabTHU/Rank-DETR.

  • 8 authors
·
Oct 13, 2023

EventVAD: Training-Free Event-Aware Video Anomaly Detection

Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.

  • 14 authors
·
Apr 17, 2025

Hallucination Score: Towards Mitigating Hallucinations in Generative Image Super-Resolution

Generative super-resolution (GSR) currently sets the state-of-the-art in terms of perceptual image quality, overcoming the "regression-to-the-mean" blur of prior non-generative models. However, from a human perspective, such models do not fully conform to the optimal balance between quality and fidelity. Instead, a different class of artifacts, in which generated details fail to perceptually match the low resolution image (LRI) or ground-truth image (GTI), is a critical but under studied issue in GSR, limiting its practical deployments. In this work, we focus on measuring, analyzing, and mitigating these artifacts (i.e., "hallucinations"). We observe that hallucinations are not well-characterized with existing image metrics or quality models, as they are orthogonal to both exact fidelity and no-reference quality. Instead, we take advantage of a multimodal large language model (MLLM) by constructing a prompt that assesses hallucinatory visual elements and generates a "Hallucination Score" (HS). We find that our HS is closely aligned with human evaluations, and also provides complementary insights to prior image metrics used for super-resolution (SR) models. In addition, we find certain deep feature distances have strong correlations with HS. We therefore propose to align the GSR models by using such features as differentiable reward functions to mitigate hallucinations.

  • 6 authors
·
Jul 18, 2025

Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

This paper focuses on tackling the problem of temporal language localization in videos, which aims to identify the start and end points of a moment described by a natural language sentence in an untrimmed video. However, it is non-trivial since it requires not only the comprehensive understanding of the video and sentence query, but also the accurate semantic correspondence capture between them. Existing efforts are mainly centered on exploring the sequential relation among video clips and query words to reason the video and sentence query, neglecting the other intra-modal relations (e.g., semantic similarity among video clips and syntactic dependency among the query words). Towards this end, in this work, we propose a Multi-modal Interaction Graph Convolutional Network (MIGCN), which jointly explores the complex intra-modal relations and inter-modal interactions residing in the video and sentence query to facilitate the understanding and semantic correspondence capture of the video and sentence query. In addition, we devise an adaptive context-aware localization method, where the context information is taken into the candidate moments and the multi-scale fully connected layers are designed to rank and adjust the boundary of the generated coarse candidate moments with different lengths. Extensive experiments on Charades-STA and ActivityNet datasets demonstrate the promising performance and superior efficiency of our model.

  • 5 authors
·
Oct 12, 2021

Uncertainty-Instructed Structure Injection for Generalizable HD Map Construction

Reliable high-definition (HD) map construction is crucial for the driving safety of autonomous vehicles. Although recent studies demonstrate improved performance, their generalization capability across unfamiliar driving scenes remains unexplored. To tackle this issue, we propose UIGenMap, an uncertainty-instructed structure injection approach for generalizable HD map vectorization, which concerns the uncertainty resampling in statistical distribution and employs explicit instance features to reduce excessive reliance on training data. Specifically, we introduce the perspective-view (PV) detection branch to obtain explicit structural features, in which the uncertainty-aware decoder is designed to dynamically sample probability distributions considering the difference in scenes. With probabilistic embedding and selection, UI2DPrompt is proposed to construct PV-learnable prompts. These PV prompts are integrated into the map decoder by designed hybrid injection to compensate for neglected instance structures. To ensure real-time inference, a lightweight Mimic Query Distillation is designed to learn from PV prompts, which can serve as an efficient alternative to the flow of PV branches. Extensive experiments on challenging geographically disjoint (geo-based) data splits demonstrate that our UIGenMap achieves superior performance, with +5.7 mAP improvement on the nuScenes dataset. Source code will be available at https://github.com/xiaolul2/UIGenMap.

  • 6 authors
·
Mar 29, 2025