new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Interactive White Balancing for Camera-Rendered Images

White balance (WB) is one of the first photo-finishing steps used to render a captured image to its final output. WB is applied to remove the color cast caused by the scene's illumination. Interactive photo-editing software allows users to manually select different regions in a photo as examples of the illumination for WB correction (e.g., clicking on achromatic objects). Such interactive editing is possible only with images saved in a RAW image format. This is because RAW images have no photo-rendering operations applied and photo-editing software is able to apply WB and other photo-finishing procedures to render the final image. Interactively editing WB in camera-rendered images is significantly more challenging. This is because the camera hardware has already applied WB to the image and subsequent nonlinear photo-processing routines. These nonlinear rendering operations make it difficult to change the WB post-capture. The goal of this paper is to allow interactive WB manipulation of camera-rendered images. The proposed method is an extension of our recent work afifi2019color that proposed a post-capture method for WB correction based on nonlinear color-mapping functions. Here, we introduce a new framework that links the nonlinear color-mapping functions directly to user-selected colors to enable {\it interactive} WB manipulation. This new framework is also more efficient in terms of memory and run-time (99\% reduction in memory and 3times speed-up). Lastly, we describe how our framework can leverage a simple illumination estimation method (i.e., gray-world) to perform auto-WB correction that is on a par with the WB correction results in afifi2019color. The source code is publicly available at https://github.com/mahmoudnafifi/Interactive_WB_correction.

  • 2 authors
·
Sep 26, 2020 1

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

Magnetic resonance imaging (MRI) is a central modality for stroke imaging. It is used upon patient admission to make treatment decisions such as selecting patients for intravenous thrombolysis or endovascular therapy. MRI is later used in the duration of hospital stay to predict outcome by visualizing infarct core size and location. Furthermore, it may be used to characterize stroke etiology, e.g. differentiation between (cardio)-embolic and non-embolic stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. Previous iterations of the Ischemic Stroke Lesion Segmentation (ISLES) challenge have aided in the generation of identifying benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions. This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n=250 and a test dataset of n=150. All training data will be made publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge with the goal of finding algorithmic methods to enable the development and benchmarking of robust and accurate segmentation algorithms for ischemic stroke.

  • 25 authors
·
Jun 14, 2022