new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches

Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.

  • 7 authors
·
Aug 11 3

LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services

Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.

  • 14 authors
·
Dec 8

WideSearch: Benchmarking Agentic Broad Info-Seeking

From professional research to everyday planning, many tasks are bottlenecked by wide-scale information seeking, which is more repetitive than cognitively complex. With the rapid development of Large Language Models (LLMs), automated search agents powered by LLMs offer a promising solution to liberate humans from this tedious work. However, the capability of these agents to perform such "wide-context" collection reliably and completely remains largely unevaluated due to a lack of suitable benchmarks. To bridge this gap, we introduce WideSearch, a new benchmark engineered to evaluate agent reliability on these large-scale collection tasks. The benchmark features 200 manually curated questions (100 in English, 100 in Chinese) from over 15 diverse domains, grounded in real user queries. Each task requires agents to collect large-scale atomic information, which could be verified one by one objectively, and arrange it into a well-organized output. A rigorous five-stage quality control pipeline ensures the difficulty, completeness, and verifiability of the dataset. We benchmark over 10 state-of-the-art agentic search systems, including single-agent, multi-agent frameworks, and end-to-end commercial systems. Most systems achieve overall success rates near 0\%, with the best performer reaching just 5\%. However, given sufficient time, cross-validation by multiple human testers can achieve a near 100\% success rate. These results demonstrate that present search agents have critical deficiencies in large-scale information seeking, underscoring urgent areas for future research and development in agentic search. Our dataset, evaluation pipeline, and benchmark results have been publicly released at https://widesearch-seed.github.io/

  • 13 authors
·
Aug 11 3

Deep Research Agents: A Systematic Examination And Roadmap

The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.

BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent

Deep-Research agents, which integrate large language models (LLMs) with search tools, have shown success in improving the effectiveness of handling complex queries that require iterative search planning and reasoning over search results. Evaluations on current benchmarks like BrowseComp relies on black-box live web search APIs, have notable limitations in (1) fairness: dynamic and opaque web APIs hinder fair comparisons and reproducibility of deep research methods; (2) transparency: lack of control over the document corpus makes it difficult to isolate retriever contributions. In other words, the current evaluations may compare a complete deep research system at a given time, but they do not foster well-controlled experiments to provide insights into the capability of underlying deep research LLMs. To address these challenges, we introduce BrowseComp-Plus, a benchmark derived from BrowseComp, employing a fixed, carefully curated corpus. Each query in BrowseComp-Plus includes human-verified supporting documents and mined challenging negatives, enabling controlled experimentation. The benchmark is shown to be effective in distinguishing the performance of deep research systems. For instance, the open-source model Search-R1, when paired with the BM25 retriever, achieves 3.86% accuracy, whereas the GPT-5 achieves 55.9%. Integrating the GPT-5 with the Qwen3-Embedding-8B retriever further enhances its accuracy to 70.1% with fewer search calls. This benchmark allows comprehensive evaluation and disentangled analysis of deep research agents and retrieval methods, fostering insights into retrieval effectiveness, citation accuracy, and context engineering in Deep-Research system.

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.

  • 26 authors
·
Jun 26 1

Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs

Tool-integrated reasoning has emerged as a key focus for enabling agentic applications. Among these, DeepResearch Agents have gained significant attention for their strong performance on complex, open-ended information-seeking tasks. We introduce Fathom-DeepResearch, an agentic system composed of two specialized models. The first is Fathom-Search-4B, a DeepSearch model trained from Qwen3-4B and optimized for evidence-based investigation through live web search and targeted webpage querying. Its training combines three advances: (i) DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learning with Verifiable Rewards through curriculum pruning, reward-aware advantage scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward that classifies each tool call by cognitive behavior and marginal utility, enabling explicit control over search trajectory breadth, depth, and horizon. These improvements enable reliable extension of tool-calling beyond 20 calls when warranted. The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system achieves state-of-the-art performance in the open-weights category while demonstrating strong generalization to diverse reasoning tasks including HLE, AIME-25, GPQA-Diamond, and MedQA.

MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability

Retrieval-Augmented Language Models (RALMs) represent a classic paradigm where models enhance generative capabilities using external knowledge retrieved via a specialized module. Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning. While existing training-based methods show promise, their agentic abilities are limited by inherent characteristics of the task-specific data used during training. To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch. In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans on a large number of pre-training data, thus acquiring universal retrieval and reasoning capabilities for LLMs. After that, the model is trained on downstream tasks to achieve further improvement. We apply both Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) for training. For SFT, we combine agent-based and distillation-based methods to generate training data, starting with a multi-agent system consisting of a planner, rewriter, observer, and followed by a self-evolving teacher model. While for RL, we employ DAPO as the training framework and adopt a hybrid reward system consisting of answer rewards and format rewards. Additionally, we introduce a curriculum learning approach that allows the model to learn progressively from easier to more challenging instances based on the number of masked spans. We evaluate the effectiveness of our framework in the scenario of open-domain multi-hop question answering. Through extensive experiments, we demonstrate that MaskSearch significantly enhances the performance of LLM-based search agents on both in-domain and out-of-domain downstream tasks.

  • 9 authors
·
May 26 2

DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments

Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.

WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking

Large Language Model (LLM)-based agents have emerged as a transformative approach for open-ended problem solving, with information seeking (IS) being a core capability that enables autonomous reasoning and decision-making. While prior research has largely focused on improving retrieval depth, we observe that current IS agents often suffer from low search efficiency, which in turn constrains overall performance. A key factor underlying this inefficiency is the sparsity of target entities in training tasks, which limits opportunities for agents to learn and generalize efficient search behaviors. To address these challenges, we propose WebLeaper, a framework for constructing high-coverage IS tasks and generating efficient solution trajectories. We formulate IS as a tree-structured reasoning problem, enabling a substantially larger set of target entities to be embedded within a constrained context. Leveraging curated Wikipedia tables, we propose three variants for synthesizing IS tasks, Basic, Union, and Reverse-Union, to systematically increase both IS efficiency and efficacy. Finally, we curate training trajectories by retaining only those that are simultaneously accurate and efficient, ensuring that the model is optimized for both correctness and search performance. Extensive experiments on both basic and comprehensive settings, conducted on five IS benchmarks, BrowserComp, GAIA, xbench-DeepSearch, WideSearch, and Seal-0, demonstrate that our method consistently achieves improvements in both effectiveness and efficiency over strong baselines.

AlibabaTongyiLab TongyiLab
·
Oct 28 2

Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL

Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.

  • 8 authors
·
Aug 11 3

Deep Research: A Systematic Survey

Large language models (LLMs) have rapidly evolved from text generators into powerful problem solvers. Yet, many open tasks demand critical thinking, multi-source, and verifiable outputs, which are beyond single-shot prompting or standard retrieval-augmented generation. Recently, numerous studies have explored Deep Research (DR), which aims to combine the reasoning capabilities of LLMs with external tools, such as search engines, thereby empowering LLMs to act as research agents capable of completing complex, open-ended tasks. This survey presents a comprehensive and systematic overview of deep research systems, including a clear roadmap, foundational components, practical implementation techniques, important challenges, and future directions. Specifically, our main contributions are as follows: (i) we formalize a three-stage roadmap and distinguish deep research from related paradigms; (ii) we introduce four key components: query planning, information acquisition, memory management, and answer generation, each paired with fine-grained sub-taxonomies; (iii) we summarize optimization techniques, including prompting, supervised fine-tuning, and agentic reinforcement learning; and (iv) we consolidate evaluation criteria and open challenges, aiming to guide and facilitate future development. As the field of deep research continues to evolve rapidly, we are committed to continuously updating this survey to reflect the latest progress in this area.

  • 26 authors
·
Nov 24 3

Tree Search for Language Model Agents

Autonomous agents powered by language models (LMs) have demonstrated promise in their ability to perform decision-making tasks such as web automation. However, a key limitation remains: LMs, primarily optimized for natural language understanding and generation, struggle with multi-step reasoning, planning, and using environmental feedback when attempting to solve realistic computer tasks. Towards addressing this, we propose an inference-time search algorithm for LM agents to explicitly perform exploration and multi-step planning in interactive web environments. Our approach is a form of best-first tree search that operates within the actual environment space, and is complementary with most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark, applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase in success rate compared to the same baseline without search, setting a state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over a baseline agent, setting a competitive success rate of 19.2%. Our experiments highlight the effectiveness of search for web agents, and we demonstrate that performance scales with increased test-time compute. We conduct a thorough analysis of our results to highlight improvements from search, limitations, and promising directions for future work. Our code and models are publicly released at https://jykoh.com/search-agents.

  • 4 authors
·
Jul 1, 2024

Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding

Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.

  • 7 authors
·
May 23 2

DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research

Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.

AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search

Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.

  • 8 authors
·
Jun 6

DeepAgent: A General Reasoning Agent with Scalable Toolsets

Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.

ReSeek: A Self-Correcting Framework for Search Agents with Instructive Rewards

Search agents powered by Large Language Models (LLMs) have demonstrated significant potential in tackling knowledge-intensive tasks. Reinforcement learning (RL) has emerged as a powerful paradigm for training these agents to perform complex, multi-step reasoning. However, prior RL-based methods often rely on sparse or rule-based rewards, which can lead agents to commit to suboptimal or erroneous reasoning paths without the ability to recover. To address these limitations, we propose ReSeek, a novel self-correcting framework for training search agents. Our framework introduces a self-correction mechanism that empowers the agent to dynamically identify and recover from erroneous search paths during an episode. By invoking a special JUDGE action, the agent can judge the information and re-plan its search strategy. To guide this process, we design a dense, instructive process reward function, which decomposes into a correctness reward for retrieving factual information and a utility reward for finding information genuinely useful for the query. Furthermore, to mitigate the risk of data contamination in existing datasets, we introduce FictionalHot, a new and challenging benchmark with recently curated questions requiring complex reasoning. Being intuitively reasonable and practically simple, extensive experiments show that agents trained with ReSeek significantly outperform SOTA baselines in task success rate and path faithfulness.

  • 5 authors
·
Oct 1

Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression

Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the Theta(n^2 d) and Theta(n d^2) complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.

  • 6 authors
·
Oct 1

A* Search Without Expansions: Learning Heuristic Functions with Deep Q-Networks

Efficiently solving problems with large action spaces using A* search has been of importance to the artificial intelligence community for decades. This is because the computation and memory requirements of A* search grow linearly with the size of the action space. This burden becomes even more apparent when A* search uses a heuristic function learned by computationally expensive function approximators, such as deep neural networks. To address this problem, we introduce Q* search, a search algorithm that uses deep Q-networks to guide search in order to take advantage of the fact that the sum of the transition costs and heuristic values of the children of a node can be computed with a single forward pass through a deep Q-network without explicitly generating those children. This significantly reduces computation time and requires only one node to be generated per iteration. We use Q* search to solve the Rubik's cube when formulated with a large action space that includes 1872 meta-actions and find that this 157-fold increase in the size of the action space incurs less than a 4-fold increase in computation time and less than a 3-fold increase in number of nodes generated when performing Q* search. Furthermore, Q* search is up to 129 times faster and generates up to 1288 times fewer nodes than A* search. Finally, although obtaining admissible heuristic functions from deep neural networks is an ongoing area of research, we prove that Q* search is guaranteed to find a shortest path given a heuristic function that neither overestimates the cost of a shortest path nor underestimates the transition cost.

  • 5 authors
·
Feb 8, 2021

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30

Synthesizing Agentic Data for Web Agents with Progressive Difficulty Enhancement Mechanisms

Web-based 'deep research' agents aim to solve complex question - answering tasks through long-horizon interactions with online tools. These tasks remain challenging, as the underlying language models are often not optimized for long-horizon reasoning and exploration. Prior work has proposed workflows for constructing instruction-tuning datasets, often leveraging knowledge graphs. However, such methods typically lack fine-grained control over difficulty and quality, yielding synthetic data that falls short of capturing the complexity required for long-horizon reasoning. Furthermore, many studies conflate data and training effects by comparing models trained under different optimization recipes, making it difficult to isolate and evaluate the effectiveness of the data itself. We introduce a two-pronged data synthesis pipeline that generates question - answer pairs by progressively increasing task complexity until a frontier baseline web agent fails. The baseline agent plays multiple roles in this process: attempting the questions, validating factuality, checking for alternative answers, and enforcing filtering. To evaluate the effectiveness of our synthesis methods, we adopt a controlled training setup based on distillation from strong web agents. Experiments across multiple web-based benchmarks show that our dataset - despite being smaller - enables the training of more effective web agents than existing datasets. In particular, our data exhibits twice the diversity in tool-use actions, allowing models trained on it to achieve stronger performance while avoiding repetitive tool-calling behaviors.

  • 7 authors
·
Oct 15 2

Accelerating Diffusion LLM Inference via Local Determinism Propagation

Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94times throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.

  • 7 authors
·
Oct 8

SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents

Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

  • 8 authors
·
Sep 28

A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications

The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of RL-based agentic search, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.

  • 10 authors
·
Oct 19

DeepMMSearch-R1: Empowering Multimodal LLMs in Multimodal Web Search

Multimodal Large Language Models (MLLMs) in real-world applications require access to external knowledge sources and must remain responsive to the dynamic and ever-changing real-world information in order to address information-seeking and knowledge-intensive user queries. Existing approaches, such as retrieval augmented generation (RAG) methods, search agents, and search equipped MLLMs, often suffer from rigid pipelines, excessive search calls, and poorly constructed search queries, which result in inefficiencies and suboptimal outcomes. To address these limitations, we present DeepMMSearch-R1, the first multimodal LLM capable of performing on-demand, multi-turn web searches and dynamically crafting queries for both image and text search tools. Specifically, DeepMMSearch-R1 can initiate web searches based on relevant crops of the input image making the image search more effective, and can iteratively adapt text search queries based on retrieved information, thereby enabling self-reflection and self-correction. Our approach relies on a two-stage training pipeline: a cold start supervised finetuning phase followed by an online reinforcement learning optimization. For training, we introduce DeepMMSearchVQA, a novel multimodal VQA dataset created through an automated pipeline intermixed with real-world information from web search tools. This dataset contains diverse, multi-hop queries that integrate textual and visual information, teaching the model when to search, what to search for, which search tool to use and how to reason over the retrieved information. We conduct extensive experiments across a range of knowledge-intensive benchmarks to demonstrate the superiority of our approach. Finally, we analyze the results and provide insights that are valuable for advancing multimodal web-search.

apple Apple
·
Oct 14 2

WebThinker: Empowering Large Reasoning Models with Deep Research Capability

Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose WebThinker, a deep research agent that empowers LRMs to autonomously search the web, navigate web pages, and draft research reports during the reasoning process. WebThinker integrates a Deep Web Explorer module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an Autonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an RL-based training strategy via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.

  • 8 authors
·
Apr 30 6

WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents

The paradigm of Large Language Models (LLMs) has increasingly shifted toward agentic applications, where web browsing capabilities are fundamental for retrieving information from diverse online sources. However, existing open-source web agents either demonstrate limited information-seeking abilities on complex tasks or lack transparent implementations. In this work, we identify that the key challenge lies in the scarcity of challenging data for information seeking. To address this limitation, we introduce WebExplorer: a systematic data generation approach using model-based exploration and iterative, long-to-short query evolution. This method creates challenging query-answer pairs that require multi-step reasoning and complex web navigation. By leveraging our curated high-quality dataset, we successfully develop advanced web agent WebExplorer-8B through supervised fine-tuning followed by reinforcement learning. Our model supports 128K context length and up to 100 tool calling turns, enabling long-horizon problem solving. Across diverse information-seeking benchmarks, WebExplorer-8B achieves the state-of-the-art performance at its scale. Notably, as an 8B-sized model, WebExplorer-8B is able to effectively search over an average of 16 turns after RL training, achieving higher accuracy than WebSailor-72B on BrowseComp-en/zh and attaining the best performance among models up to 100B parameters on WebWalkerQA and FRAMES. Beyond these information-seeking tasks, our model also achieves strong generalization on the HLE benchmark even though it is only trained on knowledge-intensive QA data. These results highlight our approach as a practical path toward long-horizon web agents.

AlphaResearch: Accelerating New Algorithm Discovery with Language Models

Large language models have made significant progress in complex but easy-to-verify problems, yet they still struggle with discovering the unknown. In this paper, we present AlphaResearch, an autonomous research agent designed to discover new algorithms on open-ended problems. To synergize the feasibility and innovation of the discovery process, we construct a novel dual research environment by combining the execution-based verify and simulated real-world peer review environment. AlphaResearch discovers new algorithm by iteratively running the following steps: (1) propose new ideas (2) verify the ideas in the dual research environment (3) optimize the research proposals for better performance. To promote a transparent evaluation process, we construct AlphaResearchComp, a new evaluation benchmark that includes an eight open-ended algorithmic problems competition, with each problem carefully curated and verified through executable pipelines, objective metrics, and reproducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison with human researchers, demonstrate the possibility of accelerating algorithm discovery with LLMs. Notably, the algorithm discovered by AlphaResearch on the ``packing circles'' problem achieves the best-of-known performance, surpassing the results of human researchers and strong baselines from recent work (e.g., AlphaEvolve). Additionally, we conduct a comprehensive analysis of the remaining challenges of the 6/8 failure cases, providing valuable insights for future research.

  • 6 authors
·
Nov 11 2

A Rigorous Benchmark with Multidimensional Evaluation for Deep Research Agents: From Answers to Reports

Artificial intelligence is undergoing the paradigm shift from closed language models to interconnected agent systems capable of external perception and information integration. As a representative embodiment, Deep Research Agents (DRAs) systematically exhibit the capabilities for task decomposition, cross-source retrieval, multi-stage reasoning, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response formatting, and scoring mechanisms, limiting their capacity to assess such systems effectively. This paper introduces a rigorous benchmark and a multidimensional evaluation framework tailored to DRAs and report-style responses. The benchmark comprises 214 expert-curated challenging queries distributed across 10 broad thematic domains, each accompanied by manually constructed reference bundles to support composite evaluation. The framework enables comprehensive evaluation of long-form reports generated by DRAs, incorporating integrated scoring metrics for semantic quality, topical focus, and retrieval trustworthiness. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement in DRA systems.

Open Deep Search: Democratizing Search with Open-source Reasoning Agents

We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.

DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery

The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

  • 7 authors
·
Aug 9

NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search

Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.

  • 7 authors
·
May 20 2

SSRL: Self-Search Reinforcement Learning

We investigate the potential of large language models (LLMs) to serve as efficient simulators for agentic search tasks in reinforcement learning (RL), thereby reducing dependence on costly interactions with external search engines. To this end, we first quantify the intrinsic search capability of LLMs via structured prompting and repeated sampling, which we term Self-Search. Our results reveal that LLMs exhibit strong scaling behavior with respect to the inference budget, achieving high pass@k on question-answering benchmarks, including the challenging BrowseComp task. Building on these observations, we introduce Self-Search RL (SSRL), which enhances LLMs' Self-Search capability through format-based and rule-based rewards. SSRL enables models to iteratively refine their knowledge utilization internally, without requiring access to external tools. Empirical evaluations demonstrate that SSRL-trained policy models provide a cost-effective and stable environment for search-driven RL training, reducing reliance on external search engines and facilitating robust sim-to-real transfer. We draw the following conclusions: 1) LLMs possess world knowledge that can be effectively elicited to achieve high performance; 2) SSRL demonstrates the potential of leveraging internal knowledge to reduce hallucination; 3) SSRL-trained models integrate seamlessly with external search engines without additional effort. Our findings highlight the potential of LLMs to support more scalable RL agent training.

  • 18 authors
·
Aug 14 4

O^2-Searcher: A Searching-based Agent Model for Open-Domain Open-Ended Question Answering

Large Language Models (LLMs), despite their advancements, are fundamentally limited by their static parametric knowledge, hindering performance on tasks requiring open-domain up-to-date information. While enabling LLMs to interact with external knowledge environments is a promising solution, current efforts primarily address closed-end problems. Open-ended questions, which characterized by lacking a standard answer or providing non-unique and diverse answers, remain underexplored. To bridge this gap, we present O^2-Searcher, a novel search agent leveraging reinforcement learning to effectively tackle both open-ended and closed-ended questions in the open domain. O^2-Searcher leverages an efficient, locally simulated search environment for dynamic knowledge acquisition, effectively decoupling the external world knowledge from model's sophisticated reasoning processes. It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies. Furthermore, to evaluate performance on complex open-ended tasks, we construct O^2-QA, a high-quality benchmark featuring 300 manually curated, multi-domain open-ended questions with associated web page caches. Extensive experiments show that O^2-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O^2-QA. It also achieves SOTA results on various closed-ended QA benchmarks against similarly-sized models, while performing on par with much larger ones.

  • 13 authors
·
May 22

Search Self-play: Pushing the Frontier of Agent Capability without Supervision

Reinforcement learning with verifiable rewards (RLVR) has become the mainstream technique for training LLM agents. However, RLVR highly depends on well-crafted task queries and corresponding ground-truth answers to provide accurate rewards, which requires massive human efforts and hinders the RL scaling processes, especially under agentic scenarios. Although a few recent works explore task synthesis methods, the difficulty of generated agentic tasks can hardly be controlled to provide effective RL training advantages. To achieve agentic RLVR with higher scalability, we explore self-play training for deep search agents, in which the learning LLM utilizes multi-turn search engine calling and acts simultaneously as both a task proposer and a problem solver. The task proposer aims to generate deep search queries with well-defined ground-truth answers and increasing task difficulty. The problem solver tries to handle the generated search queries and output the correct answer predictions. To ensure that each generated search query has accurate ground truth, we collect all the searching results from the proposer's trajectory as external knowledge, then conduct retrieval-augmentation generation (RAG) to test whether the proposed query can be correctly answered with all necessary search documents provided. In this search self-play (SSP) game, the proposer and the solver co-evolve their agent capabilities through both competition and cooperation. With substantial experimental results, we find that SSP can significantly improve search agents' performance uniformly on various benchmarks without any supervision under both from-scratch and continuous RL training setups. The code is at https://github.com/Alibaba-Quark/SSP.

Quark-LLM Quark
·
Oct 21 2

BEARCUBS: A benchmark for computer-using web agents

Modern web agents possess computer use abilities that allow them to interact with webpages by sending commands to a virtual keyboard and mouse. While such agents have considerable potential to assist human users with complex tasks, evaluating their capabilities in real-world settings poses a major challenge. To this end, we introduce BEARCUBS, a "small but mighty" benchmark of 111 information-seeking questions designed to evaluate a web agent's ability to search, browse, and identify factual information from the web. Unlike prior web agent benchmarks, solving BEARCUBS requires (1) accessing live web content rather than synthetic or simulated pages, which captures the unpredictability of real-world web interactions; and (2) performing a broad range of multimodal interactions (e.g., video understanding, 3D navigation) that cannot be bypassed via text-based workarounds. Each question in BEARCUBS has a corresponding short, unambiguous answer and a human-validated browsing trajectory, allowing for transparent evaluation of agent performance and strategies. A human study confirms that BEARCUBS questions are solvable but non-trivial (84.7% human accuracy), revealing search inefficiencies and domain knowledge gaps as common failure points. By contrast, state-of-the-art computer-using agents underperform, with the best-scoring system (OpenAI's Operator) reaching only 24.3% accuracy. These results highlight critical areas for improvement, including reliable source selection and more powerful multimodal capabilities. To facilitate future research, BEARCUBS will be updated periodically to replace invalid or contaminated questions, keeping the benchmark fresh for future generations of web agents.

  • 6 authors
·
Mar 10

FinDeepResearch: Evaluating Deep Research Agents in Rigorous Financial Analysis

Deep Research (DR) agents, powered by advanced Large Language Models (LLMs), have recently garnered increasing attention for their capability in conducting complex research tasks. However, existing literature lacks a rigorous and systematic evaluation of DR Agent's capabilities in critical research analysis. To address this gap, we first propose HisRubric, a novel evaluation framework with a hierarchical analytical structure and a fine-grained grading rubric for rigorously assessing DR agents' capabilities in corporate financial analysis. This framework mirrors the professional analyst's workflow, progressing from data recognition to metric calculation, and finally to strategic summarization and interpretation. Built on this framework, we construct a FinDeepResearch benchmark that comprises 64 listed companies from 8 financial markets across 4 languages, encompassing a total of 15,808 grading items. We further conduct extensive experiments on the FinDeepResearch using 16 representative methods, including 6 DR agents, 5 LLMs equipped with both deep reasoning and search capabilities, and 5 LLMs with deep reasoning capabilities only. The results reveal the strengths and limitations of these approaches across diverse capabilities, financial markets, and languages, offering valuable insights for future research and development. The benchmark and evaluation code will be made publicly available.

  • 22 authors
·
Oct 15

InteractComp: Evaluating Search Agents With Ambiguous Queries

Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.

  • 25 authors
·
Oct 28 2

einspace: Searching for Neural Architectures from Fundamental Operations

Neural architecture search (NAS) finds high performing networks for a given task. Yet the results of NAS are fairly prosaic; they did not e.g. create a shift from convolutional structures to transformers. This is not least because the search spaces in NAS often aren't diverse enough to include such transformations a priori. Instead, for NAS to provide greater potential for fundamental design shifts, we need a novel expressive search space design which is built from more fundamental operations. To this end, we introduce einspace, a search space based on a parameterised probabilistic context-free grammar. Our space is versatile, supporting architectures of various sizes and complexities, while also containing diverse network operations which allow it to model convolutions, attention components and more. It contains many existing competitive architectures, and provides flexibility for discovering new ones. Using this search space, we perform experiments to find novel architectures as well as improvements on existing ones on the diverse Unseen NAS datasets. We show that competitive architectures can be obtained by searching from scratch, and we consistently find large improvements when initialising the search with strong baselines. We believe that this work is an important advancement towards a transformative NAS paradigm where search space expressivity and strategic search initialisation play key roles.

  • 8 authors
·
May 31, 2024

IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction

Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.

  • 16 authors
·
Nov 10 10

Automated Design of Agentic Systems

Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.

  • 3 authors
·
Aug 15, 2024 3

KwaiAgents: Generalized Information-seeking Agent System with Large Language Models

Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.

  • 8 authors
·
Dec 8, 2023

The Impacts of Data, Ordering, and Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds

Vector search systems, pivotal in AI applications, often rely on the Hierarchical Navigable Small Worlds (HNSW) algorithm. However, the behaviour of HNSW under real-world scenarios using vectors generated with deep learning models remains under-explored. Existing Approximate Nearest Neighbours (ANN) benchmarks and research typically has an over-reliance on simplistic datasets like MNIST or SIFT1M and fail to reflect the complexity of current use-cases. Our investigation focuses on HNSW's efficacy across a spectrum of datasets, including synthetic vectors tailored to mimic specific intrinsic dimensionalities, widely-used retrieval benchmarks with popular embedding models, and proprietary e-commerce image data with CLIP models. We survey the most popular HNSW vector databases and collate their default parameters to provide a realistic fixed parameterisation for the duration of the paper. We discover that the recall of approximate HNSW search, in comparison to exact K Nearest Neighbours (KNN) search, is linked to the vector space's intrinsic dimensionality and significantly influenced by the data insertion sequence. Our methodology highlights how insertion order, informed by measurable properties such as the pointwise Local Intrinsic Dimensionality (LID) or known categories, can shift recall by up to 12 percentage points. We also observe that running popular benchmark datasets with HNSW instead of KNN can shift rankings by up to three positions for some models. This work underscores the need for more nuanced benchmarks and design considerations in developing robust vector search systems using approximate vector search algorithms. This study presents a number of scenarios with varying real world applicability which aim to better increase understanding and future development of ANN algorithms and embedding

  • 2 authors
·
May 28, 2024

Agent Attention: On the Integration of Softmax and Linear Attention

The attention module is the key component in Transformers. While the global attention mechanism offers high expressiveness, its excessive computational cost restricts its applicability in various scenarios. In this paper, we propose a novel attention paradigm, Agent Attention, to strike a favorable balance between computational efficiency and representation power. Specifically, the Agent Attention, denoted as a quadruple (Q, A, K, V), introduces an additional set of agent tokens A into the conventional attention module. The agent tokens first act as the agent for the query tokens Q to aggregate information from K and V, and then broadcast the information back to Q. Given the number of agent tokens can be designed to be much smaller than the number of query tokens, the agent attention is significantly more efficient than the widely adopted Softmax attention, while preserving global context modelling capability. Interestingly, we show that the proposed agent attention is equivalent to a generalized form of linear attention. Therefore, agent attention seamlessly integrates the powerful Softmax attention and the highly efficient linear attention. Extensive experiments demonstrate the effectiveness of agent attention with various vision Transformers and across diverse vision tasks, including image classification, object detection, semantic segmentation and image generation. Notably, agent attention has shown remarkable performance in high-resolution scenarios, owning to its linear attention nature. For instance, when applied to Stable Diffusion, our agent attention accelerates generation and substantially enhances image generation quality without any additional training. Code is available at https://github.com/LeapLabTHU/Agent-Attention.

  • 6 authors
·
Dec 14, 2023

MindSearch: Mimicking Human Minds Elicits Deep AI Searcher

Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.

  • 7 authors
·
Jul 29, 2024 4

ResearchRubrics: A Benchmark of Prompts and Rubrics For Evaluating Deep Research Agents

Deep Research (DR) is an emerging agent application that leverages large language models (LLMs) to address open-ended queries. It requires the integration of several capabilities, including multi-step reasoning, cross-document synthesis, and the generation of evidence-backed, long-form answers. Evaluating DR remains challenging because responses are lengthy and diverse, admit many valid solutions, and often depend on dynamic information sources. We introduce ResearchRubrics, a standardized benchmark for DR built with over 2,800+ hours of human labor that pairs realistic, domain-diverse prompts with 2,500+ expert-written, fine-grained rubrics to assess factual grounding, reasoning soundness, and clarity. We also propose a new complexity framework for categorizing DR tasks along three axes: conceptual breadth, logical nesting, and exploration. In addition, we develop human and model-based evaluation protocols that measure rubric adherence for DR agents. We evaluate several state-of-the-art DR systems and find that even leading agents like Gemini's DR and OpenAI's DR achieve under 68% average compliance with our rubrics, primarily due to missed implicit context and inadequate reasoning about retrieved information. Our results highlight the need for robust, scalable assessment of deep research capabilities, to which end we release ResearchRubrics(including all prompts, rubrics, and evaluation code) to facilitate progress toward well-justified research assistants.

ScaleAI Scale AI
·
Nov 10 4

AI-SearchPlanner: Modular Agentic Search via Pareto-Optimal Multi-Objective Reinforcement Learning

Recent studies have explored integrating Large Language Models (LLMs) with search engines to leverage both the LLMs' internal pre-trained knowledge and external information. Specially, reinforcement learning (RL) has emerged as a promising paradigm for enhancing LLM reasoning through multi-turn interactions with search engines. However, existing RL-based search agents rely on a single LLM to handle both search planning and question-answering (QA) tasks in an end-to-end manner, which limits their ability to optimize both capabilities simultaneously. In practice, sophisticated AI search systems often employ a large, frozen LLM (e.g., GPT-4, DeepSeek-R1) to ensure high-quality QA. Thus, a more effective and efficient approach is to utilize a small, trainable LLM dedicated to search planning. In this paper, we propose AI-SearchPlanner, a novel reinforcement learning framework designed to enhance the performance of frozen QA models by focusing on search planning. Specifically, our approach introduces three key innovations: 1) Decoupling the Architecture of the Search Planner and Generator, 2) Dual-Reward Alignment for Search Planning, and 3) Pareto Optimization of Planning Utility and Cost, to achieve the objectives. Extensive experiments on real-world datasets demonstrate that AI SearchPlanner outperforms existing RL-based search agents in both effectiveness and efficiency, while exhibiting strong generalization capabilities across diverse frozen QA models and data domains.

  • 3 authors
·
Aug 27

Autonomous Deep Agent

This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.

  • 5 authors
·
Feb 10

ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies

In this paper we introduce ResearchCodeAgent, a novel multi-agent system leveraging large language models (LLMs) agents to automate the codification of research methodologies described in machine learning literature. The system bridges the gap between high-level research concepts and their practical implementation, allowing researchers auto-generating code of existing research papers for benchmarking or building on top-of existing methods specified in the literature with availability of partial or complete starter code. ResearchCodeAgent employs a flexible agent architecture with a comprehensive action suite, enabling context-aware interactions with the research environment. The system incorporates a dynamic planning mechanism, utilizing both short and long-term memory to adapt its approach iteratively. We evaluate ResearchCodeAgent on three distinct machine learning tasks with distinct task complexity and representing different parts of the ML pipeline: data augmentation, optimization, and data batching. Our results demonstrate the system's effectiveness and generalizability, with 46.9% of generated code being high-quality and error-free, and 25% showing performance improvements over baseline implementations. Empirical analysis shows an average reduction of 57.9% in coding time compared to manual implementation. We observe higher gains for more complex tasks. ResearchCodeAgent represents a significant step towards automating the research implementation process, potentially accelerating the pace of machine learning research.

  • 5 authors
·
Apr 28

BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese

As large language models (LLMs) evolve into tool-using agents, the ability to browse the web in real-time has become a critical yardstick for measuring their reasoning and retrieval competence. Existing benchmarks such as BrowseComp concentrate on English and overlook the linguistic, infrastructural, and censorship-related complexities of other major information ecosystems -- most notably Chinese. To address this gap, we introduce BrowseComp-ZH, a high-difficulty benchmark purpose-built to comprehensively evaluate LLM agents on the Chinese web. BrowseComp-ZH consists of 289 multi-hop questions spanning 11 diverse domains. Each question is reverse-engineered from a short, objective, and easily verifiable answer (e.g., a date, number, or proper noun). A two-stage quality control protocol is applied to strive for high question difficulty and answer uniqueness. We benchmark over 20 state-of-the-art language models and agentic search systems on our proposed BrowseComp-ZH. Despite their strong conversational and retrieval capabilities, most models struggle severely: a large number achieve accuracy rates below 10%, and only a handful exceed 20%. Even the best-performing system, OpenAI's DeepResearch, reaches just 42.9%. These results demonstrate the considerable difficulty of BrowseComp-ZH, where success demands not only effective retrieval strategies, but also sophisticated reasoning and information reconciliation -- capabilities that current models still struggle to master. Our dataset, construction guidelines, and benchmark results have been publicly released at https://github.com/PALIN2018/BrowseComp-ZH.

  • 16 authors
·
Apr 27 2

TURA: Tool-Augmented Unified Retrieval Agent for AI Search

The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.

  • 9 authors
·
Aug 6

DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search

Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.

stanfordnlp Stanford NLP
·
Sep 29 3

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use

Recent advancements in Multi-modal Large Language Models (MLLMs) have led to significant progress in developing GUI agents for general tasks such as web browsing and mobile phone use. However, their application in professional domains remains under-explored. These specialized workflows introduce unique challenges for GUI perception models, including high-resolution displays, smaller target sizes, and complex environments. In this paper, we introduce ScreenSpot-Pro, a new benchmark designed to rigorously evaluate the grounding capabilities of MLLMs in high-resolution professional settings. The benchmark comprises authentic high-resolution images from a variety of professional domains with expert annotations. It spans 23 applications across five industries and three operating systems. Existing GUI grounding models perform poorly on this dataset, with the best model achieving only 18.9%. Our experiments reveal that strategically reducing the search area enhances accuracy. Based on this insight, we propose ScreenSeekeR, a visual search method that utilizes the GUI knowledge of a strong planner to guide a cascaded search, achieving state-of-the-art performance with 48.1% without any additional training. We hope that our benchmark and findings will advance the development of GUI agents for professional applications. Code, data and leaderboard can be found at https://gui-agent.github.io/grounding-leaderboard.

  • 8 authors
·
Apr 4

LLM-guided Hierarchical Retrieval

Modern IR systems are increasingly tasked with answering complex, multi-faceted queries that require deep reasoning rather than simple keyword or semantic matching. While LLM-based IR has shown great promise, the prevailing retrieve-then-rerank paradigm inherits the limitations of embedding-based retrieval; parametric generative approaches are difficult to update with new information; and long-context methods that place the entire corpus in context are computationally infeasible for large document collections. To address these challenges, we introduce LATTICE, a hierarchical retrieval framework that enables an LLM to reason over and navigate large corpora with logarithmic search complexity by imposing a semantic tree structure on the corpus. Our approach consists of two stages: (1) an offline phase that organizes the corpus into a semantic hierarchy via either a bottom-up agglomerative strategy or a top-down divisive strategy using multi-level summaries and (2) an online traversal phase where a search LLM navigates this tree. A central challenge in such LLM-guided search is that the model's relevance judgments are noisy, context-dependent, and unaware of the hierarchy, making cross-branch and cross-level comparisons difficult. To overcome this, we propose a traversal algorithm that estimates calibrated latent relevance scores from local LLM outputs and aggregates them into a global path relevance metric. Our training-free framework achieves state-of-the-art zero-shot performance on the reasoning-intensive BRIGHT benchmark, demonstrating up to 9% improvement in Recall@100 and 5% in nDCG@10 over the next best zero-shot baseline. Furthermore, compared to the fine-tuned SOTA method DIVER-v2, LATTICE attains comparable results on BRIGHT subsets that use a static corpus for evaluation.

google Google
·
Oct 15 2

Reinforcement Learning Foundations for Deep Research Systems: A Survey

Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.

ZeroSearch: Incentivize the Search Capability of LLMs without Searching

Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a reinforcement learning framework that incentivizes the search capabilities of LLMs without interacting with real search engines. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both relevant and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.

  • 9 authors
·
May 7 8

End-to-End Goal-Driven Web Navigation

We propose a goal-driven web navigation as a benchmark task for evaluating an agent with abilities to understand natural language and plan on partially observed environments. In this challenging task, an agent navigates through a website, which is represented as a graph consisting of web pages as nodes and hyperlinks as directed edges, to find a web page in which a query appears. The agent is required to have sophisticated high-level reasoning based on natural languages and efficient sequential decision-making capability to succeed. We release a software tool, called WebNav, that automatically transforms a website into this goal-driven web navigation task, and as an example, we make WikiNav, a dataset constructed from the English Wikipedia. We extensively evaluate different variants of neural net based artificial agents on WikiNav and observe that the proposed goal-driven web navigation well reflects the advances in models, making it a suitable benchmark for evaluating future progress. Furthermore, we extend the WikiNav with question-answer pairs from Jeopardy! and test the proposed agent based on recurrent neural networks against strong inverted index based search engines. The artificial agents trained on WikiNav outperforms the engined based approaches, demonstrating the capability of the proposed goal-driven navigation as a good proxy for measuring the progress in real-world tasks such as focused crawling and question-answering.

  • 2 authors
·
Feb 6, 2016

A Deep Look into Neural Ranking Models for Information Retrieval

Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.

  • 9 authors
·
Mar 16, 2019