- Optimal strategies for gravitational wave stochastic background searches in pulsar timing data A low frequency stochastic background of gravitational waves may be detected by pulsar timing experiments in the next five to ten years. Using methods developed to analyze interferometric gravitational wave data, in this paper we lay out the optimal techniques to detect a background of gravitational waves using a pulsar timing array. We show that for pulsar distances and gravitational wave frequencies typical of pulsar timing experiments, neglecting the effect of the metric perturbation at the pulsar does not result in a significant deviation from optimality. We discuss methods for setting upper limits using the optimal statistic, show how to construct skymaps using the pulsar timing array, and consider several issues associated with realistic analysis of pulsar timing data. 5 authors · Sep 3, 2008
- Accelerated Bayesian Inference for Pulsar Timing Arrays: Normalizing Flows for Rapid Model Comparison Across Stochastic Gravitational-Wave Background Sources The recent detection of nanohertz stochastic gravitational-wave backgrounds (SGWBs) by pulsar timing arrays (PTAs) promises unique insights into astrophysical and cosmological origins. However, traditional Markov Chain Monte Carlo (MCMC) approaches become prohibitively expensive for large datasets. We employ a normalizing flow (NF)-based machine learning framework to accelerate Bayesian inference in PTA analyses. For the first time, we perform Bayesian model comparison across SGWB source models in the framework of machine learning by training NF architectures on the PTA dataset (NANOGrav 15-year) and enabling direct evidence estimation via learned harmonic mean estimators. Our examples include 10 conventional SGWB source models such as supermassive black hole binaries, power-law spectrum, cosmic strings, domain walls, scalar-induced GWs, first-order phase transitions, and dual scenario/inflationary gravitational wave. Our approach jointly infers 20 red noise parameters and 2 SGWB parameters per model in sim 20\,hours (including training), compared to sim 10\,days with MCMC. Critically, the NF method preserves rigorous model selection accuracy, with small Hellinger distances (lesssim 0.3) relative to MCMC posteriors, and reproduces MCMC-based Bayes factors across all tested scenarios. This scalable technique for SGWB source comparison will be essential for future PTA expansions and next-generation arrays such as the SKA, offering orders-of-magnitude efficiency gains without sacrificing physical interpretability. 2 authors · Apr 5, 2025