3 Approaching Human-Level Forecasting with Language Models Forecasting future events is important for policy and decision making. In this work, we study whether language models (LMs) can forecast at the level of competitive human forecasters. Towards this goal, we develop a retrieval-augmented LM system designed to automatically search for relevant information, generate forecasts, and aggregate predictions. To facilitate our study, we collect a large dataset of questions from competitive forecasting platforms. Under a test set published after the knowledge cut-offs of our LMs, we evaluate the end-to-end performance of our system against the aggregates of human forecasts. On average, the system nears the crowd aggregate of competitive forecasters, and in some settings surpasses it. Our work suggests that using LMs to forecast the future could provide accurate predictions at scale and help to inform institutional decision making. 4 authors · Feb 28, 2024
- Plan$\times$RAG: Planning-guided Retrieval Augmented Generation We introduce Planning-guided Retrieval Augmented Generation (PlantimesRAG), a novel framework that augments the retrieve-then-reason paradigm of existing RAG frameworks to plan-then-retrieve. PlantimesRAG formulates a reasoning plan as a directed acyclic graph (DAG), decomposing queries into interrelated atomic sub-queries. Answer generation follows the DAG structure, allowing significant gains in efficiency through parallelized retrieval and generation. While state-of-the-art RAG solutions require extensive data generation and fine-tuning of language models (LMs), PlantimesRAG incorporates frozen LMs as plug-and-play experts to generate high-quality answers. Compared to existing RAG solutions, PlantimesRAG demonstrates significant improvements in reducing hallucinations and bolstering attribution due to its structured sub-query decomposition. Overall, PlantimesRAG offers a new perspective on integrating external knowledge in LMs while ensuring attribution by design, contributing towards more reliable LM-based systems. 6 authors · Oct 28, 2024
6 ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems Evaluating retrieval-augmented generation (RAG) systems traditionally relies on hand annotations for input queries, passages to retrieve, and responses to generate. We introduce ARES, an Automated RAG Evaluation System, for evaluating RAG systems along the dimensions of context relevance, answer faithfulness, and answer relevance. Using synthetic training data, ARES finetunes lightweight LM judges to assess the quality of individual RAG components. To mitigate potential prediction errors, ARES utilizes a small set of human-annotated datapoints for prediction-powered inference (PPI). Across six different knowledge-intensive tasks in KILT and SuperGLUE, ARES accurately evaluates RAG systems while using a few hundred human annotations during evaluation. Furthermore, ARES judges remain effective across domain shifts, proving accurate even after changing the type of queries and/or documents used in the evaluated RAG systems. We make our datasets and code for replication and deployment available at https://github.com/stanford-futuredata/ARES. 4 authors · Nov 15, 2023 3
10 Guided Decoding and Its Critical Role in Retrieval-Augmented Generation The integration of Large Language Models (LLMs) into various applications has driven the need for structured and reliable responses. A key challenge in Retrieval-Augmented Generation (RAG) systems is ensuring that outputs align with expected formats while minimizing hallucinations. This study examines the role of guided decoding in RAG systems, comparing three methods, Outlines, XGrammar, and LM Format Enforcer, across different multi-turn prompting setups (0-turn, 1-turn, and 2-turn). By evaluating success rates, hallucination rates, and output quality, we provide insights into their performance and applicability. Our findings reveal how multi-turn interactions influence guided decoding, uncovering unexpected performance variations that can inform method selection for specific use cases. This work advances the understanding of structured output generation in RAG systems, offering both theoretical insights and practical guidance for LLM deployment. NewMind AI · Sep 8, 2025 2