Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMuSaG: A Multimodal German Sarcasm Dataset with Full-Modal Annotations
Sarcasm is a complex form of figurative language in which the intended meaning contradicts the literal one. Its prevalence in social media and popular culture poses persistent challenges for natural language understanding, sentiment analysis, and content moderation. With the emergence of multimodal large language models, sarcasm detection extends beyond text and requires integrating cues from audio and vision. We present MuSaG, the first German multimodal sarcasm detection dataset, consisting of 33 minutes of manually selected and human-annotated statements from German television shows. Each instance provides aligned text, audio, and video modalities, annotated separately by humans, enabling evaluation in unimodal and multimodal settings. We benchmark nine open-source and commercial models, spanning text, audio, vision, and multimodal architectures, and compare their performance to human annotations. Our results show that while humans rely heavily on audio in conversational settings, models perform best on text. This highlights a gap in current multimodal models and motivates the use of MuSaG for developing models better suited to realistic scenarios. We release MuSaG publicly to support future research on multimodal sarcasm detection and human-model alignment.
An Innovative CGL-MHA Model for Sarcasm Sentiment Recognition Using the MindSpore Framework
The pervasive use of the Internet and social media introduces significant challenges to automated sentiment analysis, particularly for sarcastic expressions in user-generated content. Sarcasm conveys negative emotions through ostensibly positive or exaggerated language, complicating its detection within natural language processing tasks. To address this, we propose an innovative sarcasm detection model integrating Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Multi-Head Attention mechanisms. The CNN component captures local n-gram features, while GRU and LSTM layers model sequential dependencies and contextual information. Multi-Head Attention enhances the model's focus on relevant parts of the input, improving interpretability. Experiments on two sarcasm detection datasets, Headlines and Riloff, demonstrate that the model achieves an accuracy of 81.20% and an F1 score of 80.77% on Headlines, and an accuracy of 79.72% with an F1 score of 61.39% on Riloff, outperforming traditional models. These results validate the effectiveness of our hybrid approach for sarcasm detection in social media texts.
Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue
Sarcasm Explanation in Dialogue (SED) is a new yet challenging task, which aims to generate a natural language explanation for the given sarcastic dialogue that involves multiple modalities (\ie utterance, video, and audio). Although existing studies have achieved great success based on the generative pretrained language model BART, they overlook exploiting the sentiments residing in the utterance, video and audio, which play important roles in reflecting sarcasm that essentially involves subtle sentiment contrasts. Nevertheless, it is non-trivial to incorporate sentiments for boosting SED performance, due to three main challenges: 1) diverse effects of utterance tokens on sentiments; 2) gap between video-audio sentiment signals and the embedding space of BART; and 3) various relations among utterances, utterance sentiments, and video-audio sentiments. To tackle these challenges, we propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE. In particular, we first propose a lexicon-guided utterance sentiment inference module, where a heuristic utterance sentiment refinement strategy is devised. We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip. Thereafter, we devise a context-sentiment graph to comprehensively model the semantic relations among the utterances, utterance sentiments, and video-audio sentiments, to facilitate sarcasm explanation generation. Extensive experiments on the publicly released dataset WITS verify the superiority of our model over cutting-edge methods.
Towards Multimodal Sarcasm Detection (An _Obviously_ Perfect Paper)
Sarcasm is often expressed through several verbal and non-verbal cues, e.g., a change of tone, overemphasis in a word, a drawn-out syllable, or a straight looking face. Most of the recent work in sarcasm detection has been carried out on textual data. In this paper, we argue that incorporating multimodal cues can improve the automatic classification of sarcasm. As a first step towards enabling the development of multimodal approaches for sarcasm detection, we propose a new sarcasm dataset, Multimodal Sarcasm Detection Dataset (MUStARD), compiled from popular TV shows. MUStARD consists of audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its context of historical utterances in the dialogue, which provides additional information on the scenario where the utterance occurs. Our initial results show that the use of multimodal information can reduce the relative error rate of sarcasm detection by up to 12.9% in F-score when compared to the use of individual modalities. The full dataset is publicly available for use at https://github.com/soujanyaporia/MUStARD
Sarcasm Detection using Hybrid Neural Network
Sarcasm Detection has enjoyed great interest from the research community, however the task of predicting sarcasm in a text remains an elusive problem for machines. Past studies mostly make use of twitter datasets collected using hashtag based supervision but such datasets are noisy in terms of labels and language. To overcome these shortcoming, we introduce a new dataset which contains news headlines from a sarcastic news website and a real news website. Next, we propose a hybrid Neural Network architecture with attention mechanism which provides insights about what actually makes sentences sarcastic. Through experiments, we show that the proposed model improves upon the baseline by ~ 5% in terms of classification accuracy.
A Large Self-Annotated Corpus for Sarcasm
We introduce the Self-Annotated Reddit Corpus (SARC), a large corpus for sarcasm research and for training and evaluating systems for sarcasm detection. The corpus has 1.3 million sarcastic statements -- 10 times more than any previous dataset -- and many times more instances of non-sarcastic statements, allowing for learning in both balanced and unbalanced label regimes. Each statement is furthermore self-annotated -- sarcasm is labeled by the author, not an independent annotator -- and provided with user, topic, and conversation context. We evaluate the corpus for accuracy, construct benchmarks for sarcasm detection, and evaluate baseline methods.
Reading with Intent
Retrieval augmented generation (RAG) systems augment how knowledge language models are by integrating external information sources such as Wikipedia, internal documents, scientific papers, or the open internet. RAG systems that rely on the open internet as their knowledge source have to contend with the complexities of human-generated content. Human communication extends much deeper than just the words rendered as text. Intent, tonality, and connotation can all change the meaning of what is being conveyed. Recent real-world deployments of RAG systems have shown some difficulty in understanding these nuances of human communication. One significant challenge for these systems lies in processing sarcasm. Though the Large Language Models (LLMs) that make up the backbone of these RAG systems are able to detect sarcasm, they currently do not always use these detections for the subsequent processing of text. To address these issues, in this paper, we synthetically generate sarcastic passages from Natural Question's Wikipedia retrieval corpus. We then test the impact of these passages on the performance of both the retriever and reader portion of the RAG pipeline. We introduce a prompting system designed to enhance the model's ability to interpret and generate responses in the presence of sarcasm, thus improving overall system performance. Finally, we conduct ablation studies to validate the effectiveness of our approach, demonstrating improvements in handling sarcastic content within RAG systems.
Deep contextualized word representations for detecting sarcasm and irony
Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results.
DocMSU: A Comprehensive Benchmark for Document-level Multimodal Sarcasm Understanding
Multimodal Sarcasm Understanding (MSU) has a wide range of applications in the news field such as public opinion analysis and forgery detection. However, existing MSU benchmarks and approaches usually focus on sentence-level MSU. In document-level news, sarcasm clues are sparse or small and are often concealed in long text. Moreover, compared to sentence-level comments like tweets, which mainly focus on only a few trends or hot topics (e.g., sports events), content in the news is considerably diverse. Models created for sentence-level MSU may fail to capture sarcasm clues in document-level news. To fill this gap, we present a comprehensive benchmark for Document-level Multimodal Sarcasm Understanding (DocMSU). Our dataset contains 102,588 pieces of news with text-image pairs, covering 9 diverse topics such as health, business, etc. The proposed large-scale and diverse DocMSU significantly facilitates the research of document-level MSU in real-world scenarios. To take on the new challenges posed by DocMSU, we introduce a fine-grained sarcasm comprehension method to properly align the pixel-level image features with word-level textual features in documents. Experiments demonstrate the effectiveness of our method, showing that it can serve as a baseline approach to the challenging DocMSU. Our code and dataset are available at https://github.com/Dulpy/DocMSU.
CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.
Interpretable Bangla Sarcasm Detection using BERT and Explainable AI
A positive phrase or a sentence with an underlying negative motive is usually defined as sarcasm that is widely used in today's social media platforms such as Facebook, Twitter, Reddit, etc. In recent times active users in social media platforms are increasing dramatically which raises the need for an automated NLP-based system that can be utilized in various tasks such as determining market demand, sentiment analysis, threat detection, etc. However, since sarcasm usually implies the opposite meaning and its detection is frequently a challenging issue, data meaning extraction through an NLP-based model becomes more complicated. As a result, there has been a lot of study on sarcasm detection in English over the past several years, and there's been a noticeable improvement and yet sarcasm detection in the Bangla language's state remains the same. In this article, we present a BERT-based system that can achieve 99.60\% while the utilized traditional machine learning algorithms are only capable of achieving 89.93\%. Additionally, we have employed Local Interpretable Model-Agnostic Explanations that introduce explainability to our system. Moreover, we have utilized a newly collected bangla sarcasm dataset, BanglaSarc that was constructed specifically for the evaluation of this study. This dataset consists of fresh records of sarcastic and non-sarcastic comments, the majority of which are acquired from Facebook and YouTube comment sections.
InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at [https://github.com/CoderChen01/InterCLIP-MEP](https://github.com/CoderChen01/InterCLIP-MEP).
MMSD3.0: A Multi-Image Benchmark for Real-World Multimodal Sarcasm Detection
Despite progress in multimodal sarcasm detection, existing datasets and methods predominantly focus on single-image scenarios, overlooking potential semantic and affective relations across multiple images. This leaves a gap in modeling cases where sarcasm is triggered by multi-image cues in real-world settings. To bridge this gap, we introduce MMSD3.0, a new benchmark composed entirely of multi-image samples curated from tweets and Amazon reviews. We further propose the Cross-Image Reasoning Model (CIRM), which performs targeted cross-image sequence modeling to capture latent inter-image connections. In addition, we introduce a relevance-guided, fine-grained cross-modal fusion mechanism based on text-image correspondence to reduce information loss during integration. We establish a comprehensive suite of strong and representative baselines and conduct extensive experiments, showing that MMSD3.0 is an effective and reliable benchmark that better reflects real-world conditions. Moreover, CIRM demonstrates state-of-the-art performance across MMSD, MMSD2.0 and MMSD3.0, validating its effectiveness in both single-image and multi-image scenarios.
MMOE: Mixture of Multimodal Interaction Experts
Multimodal machine learning, which studies the information and interactions across various input modalities, has made significant advancements in understanding the relationship between images and descriptive text. However, this is just a portion of the potential multimodal interactions seen in the real world and does not include new interactions between conflicting utterances and gestures in predicting sarcasm, for example. Notably, the current methods for capturing shared information often do not extend well to these more nuanced interactions, sometimes performing as low as 50% in binary classification. In this paper, we address this problem via a new approach called MMOE, which stands for a mixture of multimodal interaction experts. Our method automatically classifies data points from unlabeled multimodal datasets by their interaction type and employs specialized models for each specific interaction. Based on our experiments, this approach improves performance on these challenging interactions by more than 10%, leading to an overall increase of 2% for tasks like sarcasm prediction. As a result, interaction quantification provides new insights for dataset analysis and yields simple approaches that obtain state-of-the-art performance.
BanglaSarc: A Dataset for Sarcasm Detection
Being one of the most widely spoken language in the world, the use of Bangla has been increasing in the world of social media as well. Sarcasm is a positive statement or remark with an underlying negative motivation that is extensively employed in today's social media platforms. There has been a significant improvement in sarcasm detection in English over the previous many years, however the situation regarding Bangla sarcasm detection remains unchanged. As a result, it is still difficult to identify sarcasm in bangla, and a lack of high-quality data is a major contributing factor. This article proposes BanglaSarc, a dataset constructed specifically for bangla textual data sarcasm detection. This dataset contains of 5112 comments/status and contents collected from various online social platforms such as Facebook, YouTube, along with a few online blogs. Due to the limited amount of data collection of categorized comments in Bengali, this dataset will aid in the of study identifying sarcasm, recognizing people's emotion, detecting various types of Bengali expressions, and other domains. The dataset is publicly available at https://www.kaggle.com/datasets/sakibapon/banglasarc.
Multi-source Semantic Graph-based Multimodal Sarcasm Explanation Generation
Multimodal Sarcasm Explanation (MuSE) is a new yet challenging task, which aims to generate a natural language sentence for a multimodal social post (an image as well as its caption) to explain why it contains sarcasm. Although the existing pioneer study has achieved great success with the BART backbone, it overlooks the gap between the visual feature space and the decoder semantic space, the object-level metadata of the image, as well as the potential external knowledge. To solve these limitations, in this work, we propose a novel mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, named TEAM. In particular, TEAM extracts the object-level semantic meta-data instead of the traditional global visual features from the input image. Meanwhile, TEAM resorts to ConceptNet to obtain the external related knowledge concepts for the input text and the extracted object meta-data. Thereafter, TEAM introduces a multi-source semantic graph that comprehensively characterize the multi-source (i.e., caption, object meta-data, external knowledge) semantic relations to facilitate the sarcasm reasoning. Extensive experiments on a public released dataset MORE verify the superiority of our model over cutting-edge methods.
BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English
Despite large language models (LLMs) being known to exhibit bias against non-mainstream varieties, there are no known labeled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). Using web-based content from two domains, namely, Google Place reviews and Reddit comments, we collect datasets for these language varieties using two methods: location-based and topic-based filtering. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. To assess whether the dataset accurately represents these varieties, we conduct two validation steps: (a) manual annotation of language varieties and (b) automatic language variety prediction. Subsequently, we fine-tune nine large language models (LLMs) (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results reveal that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), with significant performance drops for en-IN, particularly in sarcasm detection. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE datasets, code, and models will be publicly available upon acceptance.
DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage
Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels.
DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations and is essential for the development of communicative social agents. In this paper, we introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding. Compared with previous works that treat different figurative expressions (e.g. metaphor, sarcasm) as individual tasks, DiPlomat provides a cohesive framework towards general pragmatic understanding. Our dataset is created through the utilization of Amazon Mechanical Turk ( AMT ), resulting in a total of 4, 177 multi-turn dialogues. In conjunction with the dataset, we propose two tasks, Pragmatic Identification and Reasoning (PIR) and Conversational Question Answering (CQA). Experimental results with state-of-the-art (SOTA) neural architectures reveal several significant findings: 1) large language models ( LLMs) exhibit poor performance in tackling this subjective domain; 2) comprehensive comprehension of context emerges as a critical factor for establishing benign human-machine interactions; 3) current models defect in the application of pragmatic reasoning. As a result, we call on more attention to improve the ability of context understanding, reasoning, and implied meaning modeling.
SocialNLI: A Dialogue-Centric Social Inference Dataset
Making theory-of-mind inferences from human dialogue is a strong indicator of a model's underlying social abilities, which are fundamental for adept AI assistants. However, large language and reasoning models struggle to understand sophisticated social phenomena in transcript data, such as sarcasm and irony. To assess the weaknesses of current models and to identify their solutions, we introduce SocialNLI (SoNLI) -- the first social dialogue inference dataset. SoNLI consists of a collection of dialogue transcripts hand-picked to center complex social nuances like irony and sarcasm, paired with inferences, corresponding likelihood scores, and human-written explanations. We explore social inference analysis as a facet of theory-of-mind, and evaluate LLM and reasoning model theory-of-mind ability through multi-step counterfactual reasoning.
Att-HACK: An Expressive Speech Database with Social Attitudes
This paper presents Att-HACK, the first large database of acted speech with social attitudes. Available databases of expressive speech are rare and very often restricted to the primary emotions: anger, joy, sadness, fear. This greatly limits the scope of the research on expressive speech. Besides, a fundamental aspect of speech prosody is always ignored and missing from such databases: its variety, i.e. the possibility to repeat an utterance while varying its prosody. This paper represents a first attempt to widen the scope of expressivity in speech, by providing a database of acted speech with social attitudes: friendly, seductive, dominant, and distant. The proposed database comprises 25 speakers interpreting 100 utterances in 4 social attitudes, with 3-5 repetitions each per attitude for a total of around 30 hours of speech. The Att-HACK is freely available for academic research under a Creative Commons Licence.
LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis
Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (e.g. ``he whispered softly''). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/.
Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning
Paraphrasing of offensive content is a better alternative to content removal and helps improve civility in a communication environment. Supervised paraphrasers; however, rely heavily on large quantities of labelled data to help preserve meaning and intent. They also retain a large portion of the offensiveness of the original content, which raises questions on their overall usability. In this paper we aim to assist practitioners in developing usable paraphrasers by exploring In-Context Learning (ICL) with large language models (LLMs), i.e., using a limited number of input-label demonstration pairs to guide the model in generating desired outputs for specific queries. Our study focuses on key factors such as -- number and order of demonstrations, exclusion of prompt instruction, and reduction in measured toxicity. We perform principled evaluation on three datasets, including our proposed Context-Aware Polite Paraphrase dataset, comprising of dialogue-style rude utterances, polite paraphrases, and additional dialogue context. We evaluate our approach using two closed source and one open source LLM. Our results reveal that ICL is comparable to supervised methods in generation quality, while being qualitatively better by 25% on human evaluation and attaining lower toxicity by 76%. Also, ICL-based paraphrasers only show a slight reduction in performance even with just 10% training data.
PclGPT: A Large Language Model for Patronizing and Condescending Language Detection
Disclaimer: Samples in this paper may be harmful and cause discomfort! Patronizing and condescending language (PCL) is a form of speech directed at vulnerable groups. As an essential branch of toxic language, this type of language exacerbates conflicts and confrontations among Internet communities and detrimentally impacts disadvantaged groups. Traditional pre-trained language models (PLMs) perform poorly in detecting PCL due to its implicit toxicity traits like hypocrisy and false sympathy. With the rise of large language models (LLMs), we can harness their rich emotional semantics to establish a paradigm for exploring implicit toxicity. In this paper, we introduce PclGPT, a comprehensive LLM benchmark designed specifically for PCL. We collect, annotate, and integrate the Pcl-PT/SFT dataset, and then develop a bilingual PclGPT-EN/CN model group through a comprehensive pre-training and supervised fine-tuning staircase process to facilitate implicit toxic detection. Group detection results and fine-grained detection from PclGPT and other models reveal significant variations in the degree of bias in PCL towards different vulnerable groups, necessitating increased societal attention to protect them.
Deceptive Humor: A Synthetic Multilingual Benchmark Dataset for Bridging Fabricated Claims with Humorous Content
This paper presents the Deceptive Humor Dataset (DHD), a novel resource for studying humor derived from fabricated claims and misinformation. In an era of rampant misinformation, understanding how humor intertwines with deception is essential. DHD consists of humor-infused comments generated from false narratives, incorporating fabricated claims and manipulated information using the ChatGPT-4o model. Each instance is labeled with a Satire Level, ranging from 1 for subtle satire to 3 for high-level satire and classified into five distinct Humor Categories: Dark Humor, Irony, Social Commentary, Wordplay, and Absurdity. The dataset spans multiple languages including English, Telugu, Hindi, Kannada, Tamil, and their code-mixed variants (Te-En, Hi-En, Ka-En, Ta-En), making it a valuable multilingual benchmark. By introducing DHD, we establish a structured foundation for analyzing humor in deceptive contexts, paving the way for a new research direction that explores how humor not only interacts with misinformation but also influences its perception and spread. We establish strong baselines for the proposed dataset, providing a foundation for future research to benchmark and advance deceptive humor detection models.
PunchBench: Benchmarking MLLMs in Multimodal Punchline Comprehension
Multimodal punchlines, which involve humor or sarcasm conveyed in image-caption pairs, are a popular way of communication on online multimedia platforms. With the rapid development of multimodal large language models (MLLMs), it is essential to assess their ability to effectively comprehend these punchlines. However, existing benchmarks on punchline comprehension suffer from three major limitations: 1) language shortcuts that allow models to solely rely on text, 2) lack of question diversity, and 3) narrow focus on a specific domain of multimodal content (e.g., cartoon). To address these limitations, we introduce a multimodal Punchline comprehension Benchmark, named PunchBench, which is tailored for accurate and comprehensive evaluation of punchline comprehension. To enhance the evaluation accuracy, we generate synonymous and antonymous captions by modifying original captions, which mitigates the impact of shortcuts in the captions. To provide a comprehensive evaluation, PunchBench incorporates diverse question formats and image-captions from various domains. On this basis, we conduct extensive evaluations and reveal a significant gap between state-of-the-art MLLMs and humans in punchline comprehension. To improve punchline comprehension, we propose Simple-to-Complex Chain-of-Question (SC-CoQ) strategy, enabling the models to incrementally address complicated questions by first mastering simple ones. SC-CoQ effectively enhances the performance of various MLLMs on PunchBench, surpassing in-context learning and chain-of-thought.
Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written
Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton
The Naughtyformer: A Transformer Understands Offensive Humor
Jokes are intentionally written to be funny, but not all jokes are created the same. Some jokes may be fit for a classroom of kindergarteners, but others are best reserved for a more mature audience. While recent work has shown impressive results on humor detection in text, here we instead investigate the more nuanced task of detecting humor subtypes, especially of the less innocent variety. To that end, we introduce a novel jokes dataset filtered from Reddit and solve the subtype classification task using a finetuned Transformer dubbed the Naughtyformer. Moreover, we show that our model is significantly better at detecting offensiveness in jokes compared to state-of-the-art methods.
Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.
NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations
Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.
Humor@IITK at SemEval-2021 Task 7: Large Language Models for Quantifying Humor and Offensiveness
Humor and Offense are highly subjective due to multiple word senses, cultural knowledge, and pragmatic competence. Hence, accurately detecting humorous and offensive texts has several compelling use cases in Recommendation Systems and Personalized Content Moderation. However, due to the lack of an extensive labeled dataset, most prior works in this domain haven't explored large neural models for subjective humor understanding. This paper explores whether large neural models and their ensembles can capture the intricacies associated with humor/offense detection and rating. Our experiments on the SemEval-2021 Task 7: HaHackathon show that we can develop reasonable humor and offense detection systems with such models. Our models are ranked third in subtask 1b and consistently ranked around the top 33% of the leaderboard for the remaining subtasks.
Voice Evaluation of Reasoning Ability: Diagnosing the Modality-Induced Performance Gap
We present Voice Evaluation of Reasoning Ability (VERA), a benchmark for evaluating reasoning ability in voice-interactive systems under real-time conversational constraints. VERA comprises 2,931 voice-native episodes derived from established text benchmarks and organized into five tracks (Math, Web, Science, Long-Context, Factual). Each item is adapted for speech interaction while preserving reasoning difficulty. VERA enables direct text-voice comparison within model families and supports analysis of how architectural choices affect reliability. We assess 12 contemporary voice systems alongside strong text baselines and observe large, consistent modality gaps: on competition mathematics a leading text model attains 74.8% accuracy while its voice counterpart reaches 6.1%; macro-averaged across tracks the best text models achieve 54.0% versus 11.3% for voice. Latency-accuracy analyses reveal a low-latency plateau, where fast voice systems cluster around ~10% accuracy, while approaching text performance requires sacrificing real-time interaction. Diagnostic experiments indicate that common mitigations are insufficient. Increasing "thinking time" yields negligible gains; a decoupled cascade that separates reasoning from narration improves accuracy but still falls well short of text and introduces characteristic grounding/consistency errors. Failure analyses further show distinct error signatures across native streaming, end-to-end, and cascade designs. VERA provides a reproducible testbed and targeted diagnostics for architectures that decouple thinking from speaking, offering a principled way to measure progress toward real-time voice assistants that are both fluent and reliably reasoned.
V-FLUTE: Visual Figurative Language Understanding with Textual Explanations
Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
Replacing Human Audio with Synthetic Audio for On-device Unspoken Punctuation Prediction
We present a novel multi-modal unspoken punctuation prediction system for the English language which combines acoustic and text features. We demonstrate for the first time, that by relying exclusively on synthetic data generated using a prosody-aware text-to-speech system, we can outperform a model trained with expensive human audio recordings on the unspoken punctuation prediction problem. Our model architecture is well suited for on-device use. This is achieved by leveraging hash-based embeddings of automatic speech recognition text output in conjunction with acoustic features as input to a quasi-recurrent neural network, keeping the model size small and latency low.
IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets
In this paper we introduce our system for the task of Irony detection in English tweets, a part of SemEval 2018. We propose representation learning approach that relies on a multi-layered bidirectional LSTM, without using external features that provide additional semantic information. Although our model is able to outperform the baseline in the validation set, our results show limited generalization power over the test set. Given the limited size of the dataset, we think the usage of more pre-training schemes would greatly improve the obtained results.
Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech
This work studies the capabilities of a large language model (LLM) to understand paralinguistic aspects of speech without fine-tuning its weights. We utilize an end-to-end system with a speech encoder, which is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt that has also been conditioned on the user's speaking style. This framework enables the encoder to generate tokens that capture both linguistic and paralinguistic information and effectively convey them to the LLM, even when the LLM's weights remain completely frozen. To the best of our knowledge, our work is the first to explore how to induce a frozen LLM to understand more than just linguistic content from speech inputs in a general interaction setting. Experiments demonstrate that our system is able to produce higher quality and more empathetic responses to expressive speech prompts compared to several baselines.
Testing the Ability of Language Models to Interpret Figurative Language
Figurative and metaphorical language are commonplace in discourse, and figurative expressions play an important role in communication and cognition. However, figurative language has been a relatively under-studied area in NLP, and it remains an open question to what extent modern language models can interpret nonliteral phrases. To address this question, we introduce Fig-QA, a Winograd-style nonliteral language understanding task consisting of correctly interpreting paired figurative phrases with divergent meanings. We evaluate the performance of several state-of-the-art language models on this task, and find that although language models achieve performance significantly over chance, they still fall short of human performance, particularly in zero- or few-shot settings. This suggests that further work is needed to improve the nonliteral reasoning capabilities of language models.
FanChuan: A Multilingual and Graph-Structured Benchmark For Parody Detection and Analysis
Parody is an emerging phenomenon on social media, where individuals imitate a role or position opposite to their own, often for humor, provocation, or controversy. Detecting and analyzing parody can be challenging and is often reliant on context, yet it plays a crucial role in understanding cultural values, promoting subcultures, and enhancing self-expression. However, the study of parody is hindered by limited available data and deficient diversity in current datasets. To bridge this gap, we built seven parody datasets from both English and Chinese corpora, with 14,755 annotated users and 21,210 annotated comments in total. To provide sufficient context information, we also collect replies and construct user-interaction graphs to provide richer contextual information, which is lacking in existing datasets. With these datasets, we test traditional methods and Large Language Models (LLMs) on three key tasks: (1) parody detection, (2) comment sentiment analysis with parody, and (3) user sentiment analysis with parody. Our extensive experiments reveal that parody-related tasks still remain challenging for all models, and contextual information plays a critical role. Interestingly, we find that, in certain scenarios, traditional sentence embedding methods combined with simple classifiers can outperform advanced LLMs, i.e. DeepSeek-R1 and GPT-o3, highlighting parody as a significant challenge for LLMs.
IRFL: Image Recognition of Figurative Language
Figures of speech such as metaphors, similes, and idioms allow language to be expressive, invoke emotion, and communicate abstract ideas that might otherwise be difficult to visualize. These figurative forms are often conveyed through multiple modes, such as text and images, and frequently appear in advertising, news, social media, etc. Understanding multimodal figurative language is an essential component of human communication, and it plays a significant role in our daily interactions. While humans can intuitively understand multimodal figurative language, this poses a challenging task for machines that requires the cognitive ability to map between domains, abstraction, commonsense, and profound language and cultural knowledge. In this work, we propose the Image Recognition of Figurative Language dataset to examine vision and language models' understanding of figurative language. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset and introduce two novel tasks as a benchmark for multimodal figurative understanding. We experiment with several baseline models and find that all perform substantially worse than humans. We hope our dataset and benchmark will drive the development of models that will better understand figurative language.
Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark
Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand social language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The associated resources are released at https://github.com/minjechoi/SOCKET.
COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements
Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.
ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Speculative End-Turn Detector for Efficient Speech Chatbot Assistant
Spoken dialogue systems powered by large language models have demonstrated remarkable abilities in understanding human speech and generating appropriate spoken responses. However, these systems struggle with end-turn detection (ETD) -- the ability to distinguish between user turn completion and hesitation. This limitation often leads to premature or delayed responses, disrupting the flow of spoken conversations. In this paper, we introduce the ETD Dataset, the first public dataset for end-turn detection. The ETD dataset consists of both synthetic speech data generated with text-to-speech models and real-world speech data collected from web sources. We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments. Our approach jointly employs a lightweight GRU-based model, which rapidly detects the non-speaking units in real-time on local devices, and a high-performance Wav2vec-based model running on the server to make a more challenging classification of distinguishing turn ends from mere pauses. Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low. Datasets and code will be available after the review.
Irony in Emojis: A Comparative Study of Human and LLM Interpretation
Emojis have become a universal language in online communication, often carrying nuanced and context-dependent meanings. Among these, irony poses a significant challenge for Large Language Models (LLMs) due to its inherent incongruity between appearance and intent. This study examines the ability of GPT-4o to interpret irony in emojis. By prompting GPT-4o to evaluate the likelihood of specific emojis being used to express irony on social media and comparing its interpretations with human perceptions, we aim to bridge the gap between machine and human understanding. Our findings reveal nuanced insights into GPT-4o's interpretive capabilities, highlighting areas of alignment with and divergence from human behavior. Additionally, this research underscores the importance of demographic factors, such as age and gender, in shaping emoji interpretation and evaluates how these factors influence GPT-4o's performance.
Machine Bullshit: Characterizing the Emergent Disregard for Truth in Large Language Models
Bullshit, as conceptualized by philosopher Harry Frankfurt, refers to statements made without regard to their truth value. While previous work has explored large language model (LLM) hallucination and sycophancy, we propose machine bullshit as an overarching conceptual framework that can allow researchers to characterize the broader phenomenon of emergent loss of truthfulness in LLMs and shed light on its underlying mechanisms. We introduce the Bullshit Index, a novel metric quantifying LLMs' indifference to truth, and propose a complementary taxonomy analyzing four qualitative forms of bullshit: empty rhetoric, paltering, weasel words, and unverified claims. We conduct empirical evaluations on the Marketplace dataset, the Political Neutrality dataset, and our new BullshitEval benchmark (2,400 scenarios spanning 100 AI assistants) explicitly designed to evaluate machine bullshit. Our results demonstrate that model fine-tuning with reinforcement learning from human feedback (RLHF) significantly exacerbates bullshit and inference-time chain-of-thought (CoT) prompting notably amplify specific bullshit forms, particularly empty rhetoric and paltering. We also observe prevalent machine bullshit in political contexts, with weasel words as the dominant strategy. Our findings highlight systematic challenges in AI alignment and provide new insights toward more truthful LLM behavior.
StressTest: Can YOUR Speech LM Handle the Stress?
Sentence stress refers to emphasis, placed on specific words within a spoken utterance to highlight or contrast an idea, or to introduce new information. It is often used to imply an underlying intention that is not explicitly stated. Recent advances in speech-aware language models (SLMs) have enabled direct processing of audio, allowing models to bypass transcription and access the full richness of the speech signal and perform audio reasoning tasks such as spoken question answering. Despite the crucial role of sentence stress in shaping meaning and speaker intent, it remains largely overlooked in evaluation and development of such models. In this work, we address this gap by introducing StressTest, a benchmark specifically designed to evaluate a model's ability to distinguish between interpretations of spoken sentences based on the stress pattern. We assess the performance of several leading SLMs and find that, despite their overall capabilities, they perform poorly on such tasks. To overcome this limitation, we propose a novel synthetic data generation pipeline, and create Stress17k, a training set that simulates change of meaning implied by stress variation. Then, we empirically show that optimizing models with this synthetic dataset aligns well with real-world recordings and enables effective finetuning of SLMs. Results suggest, that our finetuned model, StresSLM, significantly outperforms existing models on both sentence stress reasoning and detection tasks. Code, models, data, and audio samples - pages.cs.huji.ac.il/adiyoss-lab/stresstest.
It's not Rocket Science : Interpreting Figurative Language in Narratives
Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, we study the interpretation of two non-compositional figurative languages (idioms and similes). We collected datasets of fictional narratives containing a figurative expression along with crowd-sourced plausible and implausible continuations relying on the correct interpretation of the expression. We then trained models to choose or generate the plausible continuation. Our experiments show that models based solely on pre-trained language models perform substantially worse than humans on these tasks. We additionally propose knowledge-enhanced models, adopting human strategies for interpreting figurative language types : inferring meaning from the context and relying on the constituent words' literal meanings. The knowledge-enhanced models improve the performance on both the discriminative and generative tasks, further bridging the gap from human performance.
Language, Culture, and Ideology: Personalizing Offensiveness Detection in Political Tweets with Reasoning LLMs
We explore how large language models (LLMs) assess offensiveness in political discourse when prompted to adopt specific political and cultural perspectives. Using a multilingual subset of the MD-Agreement dataset centered on tweets from the 2020 US elections, we evaluate several recent LLMs - including DeepSeek-R1, o4-mini, GPT-4.1-mini, Qwen3, Gemma, and Mistral - tasked with judging tweets as offensive or non-offensive from the viewpoints of varied political personas (far-right, conservative, centrist, progressive) across English, Polish, and Russian contexts. Our results show that larger models with explicit reasoning abilities (e.g., DeepSeek-R1, o4-mini) are more consistent and sensitive to ideological and cultural variation, while smaller models often fail to capture subtle distinctions. We find that reasoning capabilities significantly improve both the personalization and interpretability of offensiveness judgments, suggesting that such mechanisms are key to adapting LLMs for nuanced sociopolitical text classification across languages and ideologies.
WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
BreezyVoice: Adapting TTS for Taiwanese Mandarin with Enhanced Polyphone Disambiguation -- Challenges and Insights
We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a S^{3} tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems.
Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF
Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. Addressing hate speech effectively involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These implicit expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. CoARL's first two phases involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and non-toxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of 3 points in intent-conformity and 4 points in argument-quality metrics. Extensive human evaluation supports CoARL's efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.
From Generalized Laughter to Personalized Chuckles: Unleashing the Power of Data Fusion in Subjective Humor Detection
The vast area of subjectivity in Natural Language Processing (NLP) poses a challenge to the solutions typically used in generalized tasks. As exploration in the scope of generalized NLP is much more advanced, it implies the tremendous gap that is still to be addressed amongst all feasible tasks where an opinion, taste, or feelings are inherent, thus creating a need for a solution, where a data fusion could take place. We have chosen the task of funniness, as it heavily relies on the sense of humor, which is fundamentally subjective. Our experiments across five personalized and four generalized datasets involving several personalized deep neural architectures have shown that the task of humor detection greatly benefits from the inclusion of personalized data in the training process. We tested five scenarios of training data fusion that focused on either generalized (majority voting) or personalized approaches to humor detection. The best results were obtained for the setup, in which all available personalized datasets were joined to train the personalized reasoning model. It boosted the prediction performance by up to approximately 35% of the macro F1 score. Such a significant gain was observed for all five personalized test sets. At the same time, the impact of the model's architecture was much less than the personalization itself. It seems that concatenating personalized datasets, even with the cost of normalizing the range of annotations across all datasets, if combined with the personalized models, results in an enormous increase in the performance of humor detection.
Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth
We introduce Drivelology, a unique linguistic phenomenon characterised as "nonsense with depth", utterances that are syntactically coherent yet pragmatically paradoxical, emotionally loaded, or rhetorically subversive. While such expressions may resemble surface-level nonsense, they encode implicit meaning requiring contextual inference, moral reasoning, or emotional interpretation. We find that current large language models (LLMs), despite excelling at many natural language processing (NLP) tasks, consistently fail to grasp the layered semantics of Drivelological text. To investigate this, we construct a small but diverse benchmark dataset of over 1,200 meticulously curated examples, with select instances in English, Mandarin, Spanish, French, Japanese, and Korean. Annotation was especially challenging: each of the examples required careful expert review to verify that it truly reflected Drivelological characteristics. The process involved multiple rounds of discussion and adjudication to address disagreements, highlighting the subtle and subjective nature of the Drivelology. We evaluate a range of LLMs on classification, generation, and reasoning tasks. Our results reveal clear limitations of LLMs: models often confuse Drivelology with shallow nonsense, produce incoherent justifications, or miss the implied rhetorical function altogether. These findings highlight a deeper representational gap in LLMs' pragmatic understanding and challenge the assumption that statistical fluency implies cognitive comprehension. We release our dataset and code to facilitate further research in modelling linguistic depth beyond surface-level coherence.
InfFeed: Influence Functions as a Feedback to Improve the Performance of Subjective Tasks
Recently, influence functions present an apparatus for achieving explainability for deep neural models by quantifying the perturbation of individual train instances that might impact a test prediction. Our objectives in this paper are twofold. First we incorporate influence functions as a feedback into the model to improve its performance. Second, in a dataset extension exercise, using influence functions to automatically identify data points that have been initially `silver' annotated by some existing method and need to be cross-checked (and corrected) by annotators to improve the model performance. To meet these objectives, in this paper, we introduce InfFeed, which uses influence functions to compute the influential instances for a target instance. Toward the first objective, we adjust the label of the target instance based on its influencer(s) label. In doing this, InfFeed outperforms the state-of-the-art baselines (including LLMs) by a maximum macro F1-score margin of almost 4% for hate speech classification, 3.5% for stance classification, and 3% for irony and 2% for sarcasm detection. Toward the second objective we show that manually re-annotating only those silver annotated data points in the extension set that have a negative influence can immensely improve the model performance bringing it very close to the scenario where all the data points in the extension set have gold labels. This allows for huge reduction of the number of data points that need to be manually annotated since out of the silver annotated extension dataset, the influence function scheme picks up ~1/1000 points that need manual correction.
Hope Speech detection in under-resourced Kannada language
Numerous methods have been developed to monitor the spread of negativity in modern years by eliminating vulgar, offensive, and fierce comments from social media platforms. However, there are relatively lesser amounts of study that converges on embracing positivity, reinforcing supportive and reassuring content in online forums. Consequently, we propose creating an English-Kannada Hope speech dataset, KanHope and comparing several experiments to benchmark the dataset. The dataset consists of 6,176 user-generated comments in code mixed Kannada scraped from YouTube and manually annotated as bearing hope speech or Not-hope speech. In addition, we introduce DC-BERT4HOPE, a dual-channel model that uses the English translation of KanHope for additional training to promote hope speech detection. The approach achieves a weighted F1-score of 0.756, bettering other models. Henceforth, KanHope aims to instigate research in Kannada while broadly promoting researchers to take a pragmatic approach towards online content that encourages, positive, and supportive.
Contextual Paralinguistic Data Creation for Multi-Modal Speech-LLM: Data Condensation and Spoken QA Generation
Current speech-LLMs exhibit limited capability in contextual reasoning alongside paralinguistic understanding, primarily due to the lack of Question-Answer (QA) datasets that cover both aspects. We propose a novel framework for dataset generation from in-the-wild speech data, that integrates contextual reasoning with paralinguistic information. It consists of a pseudo paralinguistic label-based data condensation of in-the-wild speech and LLM-based Contextual Paralinguistic QA (CPQA) generation. The effectiveness is validated by a strong correlation in evaluations of the Qwen2-Audio-7B-Instruct model on a dataset created by our framework and human-generated CPQA dataset. The results also reveal the speech-LLM's limitations in handling empathetic reasoning tasks, highlighting the need for such datasets and more robust models. The proposed framework is first of its kind and has potential in training more robust speech-LLMs with paralinguistic reasoning capabilities.
Multi-lingual and Multi-cultural Figurative Language Understanding
Figurative language permeates human communication, but at the same time is relatively understudied in NLP. Datasets have been created in English to accelerate progress towards measuring and improving figurative language processing in language models (LMs). However, the use of figurative language is an expression of our cultural and societal experiences, making it difficult for these phrases to be universally applicable. In this work, we create a figurative language inference dataset, \datasetname, for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba. Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region. We assess multilingual LMs' abilities to interpret figurative language in zero-shot and few-shot settings. All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data, emphasizing the need for LMs to be exposed to a broader range of linguistic and cultural variation during training.
Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user's dialogue even when subjected to non-canonical forms of speech. This depends on the agent's comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
ToXCL: A Unified Framework for Toxic Speech Detection and Explanation
The proliferation of online toxic speech is a pertinent problem posing threats to demographic groups. While explicit toxic speech contains offensive lexical signals, implicit one consists of coded or indirect language. Therefore, it is crucial for models not only to detect implicit toxic speech but also to explain its toxicity. This draws a unique need for unified frameworks that can effectively detect and explain implicit toxic speech. Prior works mainly formulated the task of toxic speech detection and explanation as a text generation problem. Nonetheless, models trained using this strategy can be prone to suffer from the consequent error propagation problem. Moreover, our experiments reveal that the detection results of such models are much lower than those that focus only on the detection task. To bridge these gaps, we introduce ToXCL, a unified framework for the detection and explanation of implicit toxic speech. Our model consists of three modules: a (i) Target Group Generator to generate the targeted demographic group(s) of a given post; an (ii) Encoder-Decoder Model in which the encoder focuses on detecting implicit toxic speech and is boosted by a (iii) Teacher Classifier via knowledge distillation, and the decoder generates the necessary explanation. ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly.
MetaHate: A Dataset for Unifying Efforts on Hate Speech Detection
Hate speech represents a pervasive and detrimental form of online discourse, often manifested through an array of slurs, from hateful tweets to defamatory posts. As such speech proliferates, it connects people globally and poses significant social, psychological, and occasionally physical threats to targeted individuals and communities. Current computational linguistic approaches for tackling this phenomenon rely on labelled social media datasets for training. For unifying efforts, our study advances in the critical need for a comprehensive meta-collection, advocating for an extensive dataset to help counteract this problem effectively. We scrutinized over 60 datasets, selectively integrating those pertinent into MetaHate. This paper offers a detailed examination of existing collections, highlighting their strengths and limitations. Our findings contribute to a deeper understanding of the existing datasets, paving the way for training more robust and adaptable models. These enhanced models are essential for effectively combating the dynamic and complex nature of hate speech in the digital realm.
Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis
Warning: this paper contains content that may be offensive or upsetting. Most hate speech datasets neglect the cultural diversity within a single language, resulting in a critical shortcoming in hate speech detection. To address this, we introduce CREHate, a CRoss-cultural English Hate speech dataset. To construct CREHate, we follow a two-step procedure: 1) cultural post collection and 2) cross-cultural annotation. We sample posts from the SBIC dataset, which predominantly represents North America, and collect posts from four geographically diverse English-speaking countries (Australia, United Kingdom, Singapore, and South Africa) using culturally hateful keywords we retrieve from our survey. Annotations are collected from the four countries plus the United States to establish representative labels for each country. Our analysis highlights statistically significant disparities across countries in hate speech annotations. Only 56.2% of the posts in CREHate achieve consensus among all countries, with the highest pairwise label difference rate of 26%. Qualitative analysis shows that label disagreement occurs mostly due to different interpretations of sarcasm and the personal bias of annotators on divisive topics. Lastly, we evaluate large language models (LLMs) under a zero-shot setting and show that current LLMs tend to show higher accuracies on Anglosphere country labels in CREHate. Our dataset and codes are available at: https://github.com/nlee0212/CREHate
Making Flow-Matching-Based Zero-Shot Text-to-Speech Laugh as You Like
Laughter is one of the most expressive and natural aspects of human speech, conveying emotions, social cues, and humor. However, most text-to-speech (TTS) systems lack the ability to produce realistic and appropriate laughter sounds, limiting their applications and user experience. While there have been prior works to generate natural laughter, they fell short in terms of controlling the timing and variety of the laughter to be generated. In this work, we propose ELaTE, a zero-shot TTS that can generate natural laughing speech of any speaker based on a short audio prompt with precise control of laughter timing and expression. Specifically, ELaTE works on the audio prompt to mimic the voice characteristic, the text prompt to indicate the contents of the generated speech, and the input to control the laughter expression, which can be either the start and end times of laughter, or the additional audio prompt that contains laughter to be mimicked. We develop our model based on the foundation of conditional flow-matching-based zero-shot TTS, and fine-tune it with frame-level representation from a laughter detector as additional conditioning. With a simple scheme to mix small-scale laughter-conditioned data with large-scale pre-training data, we demonstrate that a pre-trained zero-shot TTS model can be readily fine-tuned to generate natural laughter with precise controllability, without losing any quality of the pre-trained zero-shot TTS model. Through the evaluations, we show that ELaTE can generate laughing speech with significantly higher quality and controllability compared to conventional models. See https://aka.ms/elate/ for demo samples.
Assessing the Human Likeness of AI-Generated Counterspeech
Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It can effectively curb the spread of hatred and foster constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on the relevance, surface form, and other shallow linguistic characteristics. In this paper, we investigate the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity.
A fine-grained comparison of pragmatic language understanding in humans and language models
Pragmatics and non-literal language understanding are essential to human communication, and present a long-standing challenge for artificial language models. We perform a fine-grained comparison of language models and humans on seven pragmatic phenomena, using zero-shot prompting on an expert-curated set of English materials. We ask whether models (1) select pragmatic interpretations of speaker utterances, (2) make similar error patterns as humans, and (3) use similar linguistic cues as humans to solve the tasks. We find that the largest models achieve high accuracy and match human error patterns: within incorrect responses, models favor literal interpretations over heuristic-based distractors. We also find preliminary evidence that models and humans are sensitive to similar linguistic cues. Our results suggest that pragmatic behaviors can emerge in models without explicitly constructed representations of mental states. However, models tend to struggle with phenomena relying on social expectation violations.
STOP! Benchmarking Large Language Models with Sensitivity Testing on Offensive Progressions
Mitigating explicit and implicit biases in Large Language Models (LLMs) has become a critical focus in the field of natural language processing. However, many current methodologies evaluate scenarios in isolation, without considering the broader context or the spectrum of potential biases within each situation. To address this, we introduce the Sensitivity Testing on Offensive Progressions (STOP) dataset, which includes 450 offensive progressions containing 2,700 unique sentences of varying severity that progressively escalate from less to more explicitly offensive. Covering a broad spectrum of 9 demographics and 46 sub-demographics, STOP ensures inclusivity and comprehensive coverage. We evaluate several leading closed- and open-source models, including GPT-4, Mixtral, and Llama 3. Our findings reveal that even the best-performing models detect bias inconsistently, with success rates ranging from 19.3% to 69.8%. We also demonstrate how aligning models with human judgments on STOP can improve model answer rates on sensitive tasks such as BBQ, StereoSet, and CrowS-Pairs by up to 191%, while maintaining or even improving performance. STOP presents a novel framework for assessing the complex nature of biases in LLMs, which will enable more effective bias mitigation strategies and facilitates the creation of fairer language models.
A Scalable Pipeline for Enabling Non-Verbal Speech Generation and Understanding
Human spoken communication involves not only lexical content but also non-verbal vocalizations (NVs) such as laughter, sighs, and coughs, which convey emotions, intentions, and social signals. However, most existing speech systems focus solely on verbal content and lack the ability to understand and generate such non-verbal cues, reducing the emotional intelligence and communicative richness of spoken interfaces. In this work, we introduce NonVerbalSpeech-38K, a large and diverse dataset for non-verbal speech generation and understanding, collected from real-world media and annotated using an automatic pipeline. The dataset contains 38,718 samples (about 131 hours) with 10 categories of non-verbal cues, such as laughter, sniff, and throat clearing. We further validate the dataset by fine-tuning state-of-the-art models, including F5-TTS and Qwen2-Audio, demonstrating its effectiveness in non-verbal speech generation and understanding tasks. Our contributions are threefold: (1) We propose a practical pipeline for building natural and diverse non-verbal speech datasets; (2) We release a large-scale dataset to advance research on non-verbal speech generation and understanding; (3) We validate the dataset's effectiveness by demonstrating improvements in both non-verbal speech synthesis and captioning, thereby facilitating richer human-computer interaction.
QUILL: Quotation Generation Enhancement of Large Language Models
While Large language models (LLMs) have become excellent writing assistants, they still struggle with quotation generation. This is because they either hallucinate when providing factual quotations or fail to provide quotes that exceed human expectations. To bridge the gap, we systematically study how to evaluate and improve LLMs' performance in quotation generation tasks. We first establish a holistic and automatic evaluation system for quotation generation task, which consists of five criteria each with corresponding automatic metric. To improve the LLMs' quotation generation abilities, we construct a bilingual knowledge base that is broad in scope and rich in dimensions, containing up to 32,022 quotes. Moreover, guided by our critiria, we further design a quotation-specific metric to rerank the retrieved quotations from the knowledge base. Extensive experiments show that our metrics strongly correlate with human preferences. Existing LLMs struggle to generate desired quotes, but our quotation knowledge base and reranking metric help narrow this gap. Our dataset and code are publicly available at https://github.com/GraceXiaoo/QUILL.
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Large language models (LLMs) often produce errors, including factual inaccuracies, biases, and reasoning failures, collectively referred to as "hallucinations". Recent studies have demonstrated that LLMs' internal states encode information regarding the truthfulness of their outputs, and that this information can be utilized to detect errors. In this work, we show that the internal representations of LLMs encode much more information about truthfulness than previously recognized. We first discover that the truthfulness information is concentrated in specific tokens, and leveraging this property significantly enhances error detection performance. Yet, we show that such error detectors fail to generalize across datasets, implying that -- contrary to prior claims -- truthfulness encoding is not universal but rather multifaceted. Next, we show that internal representations can also be used for predicting the types of errors the model is likely to make, facilitating the development of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs' internal encoding and external behavior: they may encode the correct answer, yet consistently generate an incorrect one. Taken together, these insights deepen our understanding of LLM errors from the model's internal perspective, which can guide future research on enhancing error analysis and mitigation.
Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application
We propose a general method for measuring complex variables on a continuous, interval spectrum by combining supervised deep learning with the Constructing Measures approach to faceted Rasch item response theory (IRT). We decompose the target construct, hate speech in our case, into multiple constituent components that are labeled as ordinal survey items. Those survey responses are transformed via IRT into a debiased, continuous outcome measure. Our method estimates the survey interpretation bias of the human labelers and eliminates that influence on the generated continuous measure. We further estimate the response quality of each labeler using faceted IRT, allowing responses from low-quality labelers to be removed. Our faceted Rasch scaling procedure integrates naturally with a multitask deep learning architecture for automated prediction on new data. The ratings on the theorized components of the target outcome are used as supervised, ordinal variables for the neural networks' internal concept learning. We test the use of an activation function (ordinal softmax) and loss function (ordinal cross-entropy) designed to exploit the structure of ordinal outcome variables. Our multitask architecture leads to a new form of model interpretation because each continuous prediction can be directly explained by the constituent components in the penultimate layer. We demonstrate this new method on a dataset of 50,000 social media comments sourced from YouTube, Twitter, and Reddit and labeled by 11,000 U.S.-based Amazon Mechanical Turk workers to measure a continuous spectrum from hate speech to counterspeech. We evaluate Universal Sentence Encoders, BERT, and RoBERTa as language representation models for the comment text, and compare our predictive accuracy to Google Jigsaw's Perspective API models, showing significant improvement over this standard benchmark.
sense2vec - A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings
Neural word representations have proven useful in Natural Language Processing (NLP) tasks due to their ability to efficiently model complex semantic and syntactic word relationships. However, most techniques model only one representation per word, despite the fact that a single word can have multiple meanings or "senses". Some techniques model words by using multiple vectors that are clustered based on context. However, recent neural approaches rarely focus on the application to a consuming NLP algorithm. Furthermore, the training process of recent word-sense models is expensive relative to single-sense embedding processes. This paper presents a novel approach which addresses these concerns by modeling multiple embeddings for each word based on supervised disambiguation, which provides a fast and accurate way for a consuming NLP model to select a sense-disambiguated embedding. We demonstrate that these embeddings can disambiguate both contrastive senses such as nominal and verbal senses as well as nuanced senses such as sarcasm. We further evaluate Part-of-Speech disambiguated embeddings on neural dependency parsing, yielding a greater than 8% average error reduction in unlabeled attachment scores across 6 languages.
NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of Word and Character Level Attentive RNNs
In this paper we present two deep-learning systems that competed at SemEval-2018 Task 3 "Irony detection in English tweets". We design and ensemble two independent models, based on recurrent neural networks (Bi-LSTM), which operate at the word and character level, in order to capture both the semantic and syntactic information in tweets. Our models are augmented with a self-attention mechanism, in order to identify the most informative words. The embedding layer of our word-level model is initialized with word2vec word embeddings, pretrained on a collection of 550 million English tweets. We did not utilize any handcrafted features, lexicons or external datasets as prior information and our models are trained end-to-end using back propagation on constrained data. Furthermore, we provide visualizations of tweets with annotations for the salient tokens of the attention layer that can help to interpret the inner workings of the proposed models. We ranked 2nd out of 42 teams in Subtask A and 2nd out of 31 teams in Subtask B. However, post-task-completion enhancements of our models achieve state-of-the-art results ranking 1st for both subtasks.
Speaker Normalization for Self-supervised Speech Emotion Recognition
Large speech emotion recognition datasets are hard to obtain, and small datasets may contain biases. Deep-net-based classifiers, in turn, are prone to exploit those biases and find shortcuts such as speaker characteristics. These shortcuts usually harm a model's ability to generalize. To address this challenge, we propose a gradient-based adversary learning framework that learns a speech emotion recognition task while normalizing speaker characteristics from the feature representation. We demonstrate the efficacy of our method on both speaker-independent and speaker-dependent settings and obtain new state-of-the-art results on the challenging IEMOCAP dataset.
Multi-Agent Retrieval-Augmented Framework for Evidence-Based Counterspeech Against Health Misinformation
Large language models (LLMs) incorporated with Retrieval-Augmented Generation (RAG) have demonstrated powerful capabilities in generating counterspeech against misinformation. However, current studies rely on limited evidence and offer less control over final outputs. To address these challenges, we propose a Multi-agent Retrieval-Augmented Framework to generate counterspeech against health misinformation, incorporating multiple LLMs to optimize knowledge retrieval, evidence enhancement, and response refinement. Our approach integrates both static and dynamic evidence, ensuring that the generated counterspeech is relevant, well-grounded, and up-to-date. Our method outperforms baseline approaches in politeness, relevance, informativeness, and factual accuracy, demonstrating its effectiveness in generating high-quality counterspeech. To further validate our approach, we conduct ablation studies to verify the necessity of each component in our framework. Furthermore, cross evaluations show that our system generalizes well across diverse health misinformation topics and datasets. And human evaluations reveal that refinement significantly enhances counterspeech quality and obtains human preference.
CleanComedy: Creating Friendly Humor through Generative Techniques
Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets.
Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces
This paper presents the machine learning architecture of the Snips Voice Platform, a software solution to perform Spoken Language Understanding on microprocessors typical of IoT devices. The embedded inference is fast and accurate while enforcing privacy by design, as no personal user data is ever collected. Focusing on Automatic Speech Recognition and Natural Language Understanding, we detail our approach to training high-performance Machine Learning models that are small enough to run in real-time on small devices. Additionally, we describe a data generation procedure that provides sufficient, high-quality training data without compromising user privacy.
FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs
This report introduces FunAudioLLM, a model family designed to enhance natural voice interactions between humans and large language models (LLMs). At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity. SenseVoice-Small delivers exceptionally low-latency ASR for 5 languages, and SenseVoice-Large supports high-precision ASR for over 50 languages, while CosyVoice excels in multi-lingual voice generation, zero-shot in-context learning, cross-lingual voice cloning, and instruction-following capabilities. The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub. By integrating these models with LLMs, FunAudioLLM enables applications such as speech-to-speech translation, emotional voice chat, interactive podcasts, and expressive audiobook narration, thereby pushing the boundaries of voice interaction technology. Demos are available at https://fun-audio-llm.github.io, and the code can be accessed at https://github.com/FunAudioLLM.
Multilingual Multi-Figurative Language Detection
Figures of speech help people express abstract concepts and evoke stronger emotions than literal expressions, thereby making texts more creative and engaging. Due to its pervasive and fundamental character, figurative language understanding has been addressed in Natural Language Processing, but it's highly understudied in a multilingual setting and when considering more than one figure of speech at the same time. To bridge this gap, we introduce multilingual multi-figurative language modelling, and provide a benchmark for sentence-level figurative language detection, covering three common figures of speech and seven languages. Specifically, we develop a framework for figurative language detection based on template-based prompt learning. In so doing, we unify multiple detection tasks that are interrelated across multiple figures of speech and languages, without requiring task- or language-specific modules. Experimental results show that our framework outperforms several strong baselines and may serve as a blueprint for the joint modelling of other interrelated tasks.
Overview of Memotion 3: Sentiment and Emotion Analysis of Codemixed Hinglish Memes
Analyzing memes on the internet has emerged as a crucial endeavor due to the impact this multi-modal form of content wields in shaping online discourse. Memes have become a powerful tool for expressing emotions and sentiments, possibly even spreading hate and misinformation, through humor and sarcasm. In this paper, we present the overview of the Memotion 3 shared task, as part of the DeFactify 2 workshop at AAAI-23. The task released an annotated dataset of Hindi-English code-mixed memes based on their Sentiment (Task A), Emotion (Task B), and Emotion intensity (Task C). Each of these is defined as an individual task and the participants are ranked separately for each task. Over 50 teams registered for the shared task and 5 made final submissions to the test set of the Memotion 3 dataset. CLIP, BERT modifications, ViT etc. were the most popular models among the participants along with approaches such as Student-Teacher model, Fusion, and Ensembling. The best final F1 score for Task A is 34.41, Task B is 79.77 and Task C is 59.82.
GOAT-Bench: Safety Insights to Large Multimodal Models through Meme-Based Social Abuse
The exponential growth of social media has profoundly transformed how information is created, disseminated, and absorbed, exceeding any precedent in the digital age. Regrettably, this explosion has also spawned a significant increase in the online abuse of memes. Evaluating the negative impact of memes is notably challenging, owing to their often subtle and implicit meanings, which are not directly conveyed through the overt text and imagery. In light of this, large multimodal models (LMMs) have emerged as a focal point of interest due to their remarkable capabilities in handling diverse multimodal tasks. In response to this development, our paper aims to thoroughly examine the capacity of various LMMs (e.g. GPT-4V) to discern and respond to the nuanced aspects of social abuse manifested in memes. We introduce the comprehensive meme benchmark, GOAT-Bench, comprising over 6K varied memes encapsulating themes such as implicit hate speech, sexism, and cyberbullying, etc. Utilizing GOAT-Bench, we delve into the ability of LMMs to accurately assess hatefulness, misogyny, offensiveness, sarcasm, and harmful content. Our extensive experiments across a range of LMMs reveal that current models still exhibit a deficiency in safety awareness, showing insensitivity to various forms of implicit abuse. We posit that this shortfall represents a critical impediment to the realization of safe artificial intelligence. The GOAT-Bench and accompanying resources are publicly accessible at https://goatlmm.github.io/, contributing to ongoing research in this vital field.
A Suite for Acoustic Language Model Evaluation
Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ .
Detecting Conversational Mental Manipulation with Intent-Aware Prompting
Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.
Acoustic-based Gender Differentiation in Speech-aware Language Models
Speech-aware Language Models (SpeechLMs) have fundamentally transformed human-AI interaction by enabling voice-based communication, yet they may exhibit acoustic-based gender differentiation where identical questions lead to different responses based on the speaker's gender. This paper propose a new dataset that enables systematic analysis of this phenomenon, containing 9,208 speech samples across three categories: Gender-Independent, Gender-Stereotypical, and Gender-Dependent. We further evaluated LLaMA-Omni series and discovered a paradoxical pattern; while overall responses seems identical regardless of gender, the pattern is far from unbiased responses. Specifically, in Gender-Stereotypical questions, all models consistently exhibited male-oriented responses; meanwhile, in Gender-Dependent questions where gender differentiation would be contextually appropriate, models exhibited responses independent to gender instead. We also confirm that this pattern does not result from neutral options nor perceived gender of a voice. When we allow neutral response, models tends to respond neutrally also in Gender-Dependent questions. The paradoxical pattern yet retains when we applied gender neutralization methods on speech. Through comparison between SpeechLMs with corresponding backbone LLMs, we confirmed that these paradoxical patterns primarily stem from Whisper speech encoders, which generates male-oriented acoustic tokens. These findings reveal that current SpeechLMs may not successfully remove gender biases though they prioritized general fairness principles over contextual appropriateness, highlighting the need for more sophisticated techniques to utilize gender information properly in speech technology.
SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models, reducing latency across all stages. To improve draft accuracy and speed, we propose Cross-model Retrieval, a novel KV cache update strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. The code is available at https://github.com/jycha98/SpecExtend .
Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation
We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that have previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.
The Norwegian Parliamentary Speech Corpus
The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system.
GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling
Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability.
Are BabyLMs Deaf to Gricean Maxims? A Pragmatic Evaluation of Sample-efficient Language Models
Implicit meanings are integral to human communication, making it essential for language models to be capable of identifying and interpreting them. Grice (1975) proposed a set of conversational maxims that guide cooperative dialogue, noting that speakers may deliberately violate these principles to express meanings beyond literal words, and that listeners, in turn, recognize such violations to draw pragmatic inferences. Building on Surian et al. (1996)'s study of children's sensitivity to violations of Gricean maxims, we introduce a novel benchmark to test whether language models pretrained on less than 10M and less than 100M tokens can distinguish maxim-adhering from maxim-violating utterances. We compare these BabyLMs across five maxims and situate their performance relative to children and a Large Language Model (LLM) pretrained on 3T tokens. We find that overall, models trained on less than 100M tokens outperform those trained on less than 10M, yet fall short of child-level and LLM competence. Our results suggest that modest data increases improve some aspects of pragmatic behavior, leading to finer-grained differentiation between pragmatic dimensions.
Dutch Humor Detection by Generating Negative Examples
Detecting if a text is humorous is a hard task to do computationally, as it usually requires linguistic and common sense insights. In machine learning, humor detection is usually modeled as a binary classification task, trained to predict if the given text is a joke or another type of text. Rather than using completely different non-humorous texts, we propose using text generation algorithms for imitating the original joke dataset to increase the difficulty for the learning algorithm. We constructed several different joke and non-joke datasets to test the humor detection abilities of different language technologies. In particular, we compare the humor detection capabilities of classic neural network approaches with the state-of-the-art Dutch language model RobBERT. In doing so, we create and compare the first Dutch humor detection systems. We found that while other language models perform well when the non-jokes came from completely different domains, RobBERT was the only one that was able to distinguish jokes from generated negative examples. This performance illustrates the usefulness of using text generation to create negative datasets for humor recognition, and also shows that transformer models are a large step forward in humor detection.
DiscoSense: Commonsense Reasoning with Discourse Connectives
We present DiscoSense, a benchmark for commonsense reasoning via understanding a wide variety of discourse connectives. We generate compelling distractors in DiscoSense using Conditional Adversarial Filtering, an extension of Adversarial Filtering that employs conditional generation. We show that state-of-the-art pre-trained language models struggle to perform well on DiscoSense, which makes this dataset ideal for evaluating next-generation commonsense reasoning systems.
ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models
Speech language models refer to language models with speech processing and understanding capabilities. One key desirable capability for speech language models is the ability to capture the intricate interdependency between content and prosody. The existing mainstream paradigm of training speech language models, which converts speech into discrete tokens before feeding them into LLMs, is sub-optimal in learning prosody information -- we find that the resulting LLMs do not exhibit obvious emerging prosody processing capabilities via pre-training alone. To overcome this, we propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody. Each speech utterance is first transcribed into text, followed by a sequence of word-level prosody tokens. Compared with conventional speech tokenization schemes, the proposed tokenization scheme retains more complete prosody information, and is more understandable to text-based LLMs. We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone, ranging from harnessing the prosody nuances in generated speech, such as contrastive focus, understanding emotion and stress in an utterance, to maintaining prosody consistency in long contexts.
EE-TTS: Emphatic Expressive TTS with Linguistic Information
While Current TTS systems perform well in synthesizing high-quality speech, producing highly expressive speech remains a challenge. Emphasis, as a critical factor in determining the expressiveness of speech, has attracted more attention nowadays. Previous works usually enhance the emphasis by adding intermediate features, but they can not guarantee the overall expressiveness of the speech. To resolve this matter, we propose Emphatic Expressive TTS (EE-TTS), which leverages multi-level linguistic information from syntax and semantics. EE-TTS contains an emphasis predictor that can identify appropriate emphasis positions from text and a conditioned acoustic model to synthesize expressive speech with emphasis and linguistic information. Experimental results indicate that EE-TTS outperforms baseline with MOS improvements of 0.49 and 0.67 in expressiveness and naturalness. EE-TTS also shows strong generalization across different datasets according to AB test results.
COSMIC: COmmonSense knowledge for eMotion Identification in Conversations
In this paper, we address the task of utterance level emotion recognition in conversations using commonsense knowledge. We propose COSMIC, a new framework that incorporates different elements of commonsense such as mental states, events, and causal relations, and build upon them to learn interactions between interlocutors participating in a conversation. Current state-of-the-art methods often encounter difficulties in context propagation, emotion shift detection, and differentiating between related emotion classes. By learning distinct commonsense representations, COSMIC addresses these challenges and achieves new state-of-the-art results for emotion recognition on four different benchmark conversational datasets. Our code is available at https://github.com/declare-lab/conv-emotion.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context -- incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
FLEXI: Benchmarking Full-duplex Human-LLM Speech Interaction
Full-Duplex Speech-to-Speech Large Language Models (LLMs) are foundational to natural human-computer interaction, enabling real-time spoken dialogue systems. However, benchmarking and modeling these models remains a fundamental challenge. We introduce FLEXI, the first benchmark for full-duplex LLM-human spoken interaction that explicitly incorporates model interruption in emergency scenarios. FLEXI systematically evaluates the latency, quality, and conversational effectiveness of real-time dialogue through six diverse human-LLM interaction scenarios, revealing significant gaps between open source and commercial models in emergency awareness, turn terminating, and interaction latency. Finally, we suggest that next token-pair prediction offers a promising path toward achieving truly seamless and human-like full-duplex interaction.
Contextualized Counterspeech: Strategies for Adaptation, Personalization, and Evaluation
AI-generated counterspeech offers a promising and scalable strategy to curb online toxicity through direct replies that promote civil discourse. However, current counterspeech is one-size-fits-all, lacking adaptation to the moderation context and the users involved. We propose and evaluate multiple strategies for generating tailored counterspeech that is adapted to the moderation context and personalized for the moderated user. We instruct an LLaMA2-13B model to generate counterspeech, experimenting with various configurations based on different contextual information and fine-tuning strategies. We identify the configurations that generate persuasive counterspeech through a combination of quantitative indicators and human evaluations collected via a pre-registered mixed-design crowdsourcing experiment. Results show that contextualized counterspeech can significantly outperform state-of-the-art generic counterspeech in adequacy and persuasiveness, without compromising other characteristics. Our findings also reveal a poor correlation between quantitative indicators and human evaluations, suggesting that these methods assess different aspects and highlighting the need for nuanced evaluation methodologies. The effectiveness of contextualized AI-generated counterspeech and the divergence between human and algorithmic evaluations underscore the importance of increased human-AI collaboration in content moderation.
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.
PragWorld: A Benchmark Evaluating LLMs' Local World Model under Minimal Linguistic Alterations and Conversational Dynamics
Real-world conversations are rich with pragmatic elements, such as entity mentions, references, and implicatures. Understanding such nuances is a requirement for successful natural communication, and often requires building a local world model which encodes such elements and captures the dynamics of their evolving states. However, it is not well-understood whether language models (LMs) construct or maintain a robust implicit representation of conversations. In this work, we evaluate the ability of LMs to encode and update their internal world model in dyadic conversations and test their malleability under linguistic alterations. To facilitate this, we apply seven minimal linguistic alterations to conversations sourced from popular datasets and construct two benchmarks comprising yes-no questions. We evaluate a wide range of open and closed source LMs and observe that they struggle to maintain robust accuracy. Our analysis unveils that LMs struggle to memorize crucial details, such as tracking entities under linguistic alterations to conversations. We then propose a dual-perspective interpretability framework which identifies transformer layers that are useful or harmful and highlights linguistic alterations most influenced by harmful layers, typically due to encoding spurious signals or relying on shortcuts. Inspired by these insights, we propose two layer-regularization based fine-tuning strategies that suppress the effect of the harmful layers.
FT Speech: Danish Parliament Speech Corpus
This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech.
EchoMind: An Interrelated Multi-level Benchmark for Evaluating Empathetic Speech Language Models
Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.
Sentence-wise Speech Summarization: Task, Datasets, and End-to-End Modeling with LM Knowledge Distillation
This paper introduces a novel approach called sentence-wise speech summarization (Sen-SSum), which generates text summaries from a spoken document in a sentence-by-sentence manner. Sen-SSum combines the real-time processing of automatic speech recognition (ASR) with the conciseness of speech summarization. To explore this approach, we present two datasets for Sen-SSum: Mega-SSum and CSJ-SSum. Using these datasets, our study evaluates two types of Transformer-based models: 1) cascade models that combine ASR and strong text summarization models, and 2) end-to-end (E2E) models that directly convert speech into a text summary. While E2E models are appealing to develop compute-efficient models, they perform worse than cascade models. Therefore, we propose knowledge distillation for E2E models using pseudo-summaries generated by the cascade models. Our experiments show that this proposed knowledge distillation effectively improves the performance of the E2E model on both datasets.
Audio Entailment: Assessing Deductive Reasoning for Audio Understanding
Recent literature uses language to build foundation models for audio. These Audio-Language Models (ALMs) are trained on a vast number of audio-text pairs and show remarkable performance in tasks including Text-to-Audio Retrieval, Captioning, and Question Answering. However, their ability to engage in more complex open-ended tasks, like Interactive Question-Answering, requires proficiency in logical reasoning -- a skill not yet benchmarked. We introduce the novel task of Audio Entailment to evaluate an ALM's deductive reasoning ability. This task assesses whether a text description (hypothesis) of audio content can be deduced from an audio recording (premise), with potential conclusions being entailment, neutral, or contradiction, depending on the sufficiency of the evidence. We create two datasets for this task with audio recordings sourced from two audio captioning datasets -- AudioCaps and Clotho -- and hypotheses generated using Large Language Models (LLMs). We benchmark state-of-the-art ALMs and find deficiencies in logical reasoning with both zero-shot and linear probe evaluations. Finally, we propose "caption-before-reason", an intermediate step of captioning that improves the zero-shot and linear-probe performance of ALMs by an absolute 6% and 3%, respectively.
MonaLog: a Lightweight System for Natural Language Inference Based on Monotonicity
We present a new logic-based inference engine for natural language inference (NLI) called MonaLog, which is based on natural logic and the monotonicity calculus. In contrast to existing logic-based approaches, our system is intentionally designed to be as lightweight as possible, and operates using a small set of well-known (surface-level) monotonicity facts about quantifiers, lexical items and tokenlevel polarity information. Despite its simplicity, we find our approach to be competitive with other logic-based NLI models on the SICK benchmark. We also use MonaLog in combination with the current state-of-the-art model BERT in a variety of settings, including for compositional data augmentation. We show that MonaLog is capable of generating large amounts of high-quality training data for BERT, improving its accuracy on SICK.
SH2: Self-Highlighted Hesitation Helps You Decode More Truthfully
Large language models (LLMs) demonstrate great performance in text generation. However, LLMs are still suffering from hallucinations. In this work, we propose an inference-time method, Self-Highlighted Hesitation (SH2), to help LLMs decode more truthfully. SH2 is based on a simple fact rooted in information theory that for an LLM, the tokens predicted with lower probabilities are prone to be more informative than others. Our analysis shows that the tokens assigned with lower probabilities by an LLM are more likely to be closely related to factual information, such as nouns, proper nouns, and adjectives. Therefore, we propose to ''highlight'' the factual information by selecting the tokens with the lowest probabilities and concatenating them to the original context, thus forcing the model to repeatedly read and hesitate on these tokens before generation. During decoding, we also adopt contrastive decoding to emphasize the difference in the output probabilities brought by the hesitation. Experimental results demonstrate that our SH2, requiring no additional data or models, can effectively help LLMs elicit factual knowledge and distinguish hallucinated contexts. Significant and consistent improvements are achieved by SH2 for LLaMA-7b and LLaMA2-7b on multiple hallucination tasks.
LlamaPartialSpoof: An LLM-Driven Fake Speech Dataset Simulating Disinformation Generation
Previous fake speech datasets were constructed from a defender's perspective to develop countermeasure (CM) systems without considering diverse motivations of attackers. To better align with real-life scenarios, we created LlamaPartialSpoof, a 130-hour dataset contains both fully and partially fake speech, using a large language model (LLM) and voice cloning technologies to evaluate the robustness of CMs. By examining information valuable to both attackers and defenders, we identify several key vulnerabilities in current CM systems, which can be exploited to enhance attack success rates, including biases toward certain text-to-speech models or concatenation methods. Our experimental results indicate that current fake speech detection system struggle to generalize to unseen scenarios, achieving a best performance of 24.44% equal error rate.
ConFiguRe: Exploring Discourse-level Chinese Figures of Speech
Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe.
SweEval: Do LLMs Really Swear? A Safety Benchmark for Testing Limits for Enterprise Use
Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.
C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.
DySpec: Faster Speculative Decoding with Dynamic Token Tree Structure
While speculative decoding has recently appeared as a promising direction for accelerating the inference of large language models (LLMs), the speedup and scalability are strongly bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as independent chains or fixed token trees, which fails to generalize to diverse query distributions. In this paper, we propose DySpec, a faster speculative decoding algorithm with a novel dynamic token tree structure. We begin by bridging the draft distribution and acceptance rate from intuitive and empirical clues, and successfully show that the two variables are strongly correlated. Based on this, we employ a greedy strategy to dynamically expand the token tree at run time. Theoretically, we show that our method can achieve optimal results under mild assumptions. Empirically, DySpec yields a higher acceptance rate and speedup than fixed trees. DySpec can drastically improve the throughput and reduce the latency of token generation across various data distribution and model sizes, which significantly outperforms strong competitors, including Specinfer and Sequoia. Under low temperature setting, DySpec can improve the throughput up to 9.1times and reduce the latency up to 9.4times on Llama2-70B. Under high temperature setting, DySpec can also improve the throughput up to 6.21times, despite the increasing difficulty of speculating more than one token per step for draft model.
An Annotation Scheme for Factuality and its Application to Parliamentary Proceedings
Factuality assesses the extent to which a language utterance relates to real-world information; it determines whether utterances correspond to facts, possibilities, or imaginary situations, and as such, it is instrumental for fact checking. Factuality is a complex notion that relies on multiple linguistic signals, and has been studied in various disciplines. We present a complex, multi-faceted annotation scheme of factuality that combines concepts from a variety of previous works. We developed the scheme for Hebrew, but we trust that it can be adapted to other languages. We also present a set of almost 5,000 sentences in the domain of parliamentary discourse that we manually annotated according to this scheme. We report on inter-annotator agreement, and experiment with various approaches to automatically predict (some features of) the scheme, in order to extend the annotation to a large corpus.
Talk With Human-like Agents: Empathetic Dialogue Through Perceptible Acoustic Reception and Reaction
Large Language Model (LLM)-enhanced agents become increasingly prevalent in Human-AI communication, offering vast potential from entertainment to professional domains. However, current multi-modal dialogue systems overlook the acoustic information present in speech, which is crucial for understanding human communication nuances. This oversight can lead to misinterpretations of speakers' intentions, resulting in inconsistent or even contradictory responses within dialogues. To bridge this gap, in this paper, we propose PerceptiveAgent, an empathetic multi-modal dialogue system designed to discern deeper or more subtle meanings beyond the literal interpretations of words through the integration of speech modality perception. Employing LLMs as a cognitive core, PerceptiveAgent perceives acoustic information from input speech and generates empathetic responses based on speaking styles described in natural language. Experimental results indicate that PerceptiveAgent excels in contextual understanding by accurately discerning the speakers' true intentions in scenarios where the linguistic meaning is either contrary to or inconsistent with the speaker's true feelings, producing more nuanced and expressive spoken dialogues. Code is publicly available at: https://github.com/Haoqiu-Yan/PerceptiveAgent.
Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models
This paper investigates the role of dynamic external knowledge integration in improving counter-argument generation using Large Language Models (LLMs). While LLMs have shown promise in argumentative tasks, their tendency to generate lengthy, potentially unfactual responses highlights the need for more controlled and evidence-based approaches. We introduce a new manually curated dataset of argument and counter-argument pairs specifically designed to balance argumentative complexity with evaluative feasibility. We also propose a new LLM-as-a-Judge evaluation methodology that shows a stronger correlation with human judgments compared to traditional reference-based metrics. Our experimental results demonstrate that integrating dynamic external knowledge from the web significantly improves the quality of generated counter-arguments, particularly in terms of relatedness, persuasiveness, and factuality. The findings suggest that combining LLMs with real-time external knowledge retrieval offers a promising direction for developing more effective and reliable counter-argumentation systems.
Vicarious Offense and Noise Audit of Offensive Speech Classifiers: Unifying Human and Machine Disagreement on What is Offensive
Offensive speech detection is a key component of content moderation. However, what is offensive can be highly subjective. This paper investigates how machine and human moderators disagree on what is offensive when it comes to real-world social web political discourse. We show that (1) there is extensive disagreement among the moderators (humans and machines); and (2) human and large-language-model classifiers are unable to predict how other human raters will respond, based on their political leanings. For (1), we conduct a noise audit at an unprecedented scale that combines both machine and human responses. For (2), we introduce a first-of-its-kind dataset of vicarious offense. Our noise audit reveals that moderation outcomes vary wildly across different machine moderators. Our experiments with human moderators suggest that political leanings combined with sensitive issues affect both first-person and vicarious offense. The dataset is available through https://github.com/Homan-Lab/voiced.
Hummus: A Dataset of Humorous Multimodal Metaphor Use
Metaphor and humor share a lot of common ground, and metaphor is one of the most common humorous mechanisms. This study focuses on the humorous capacity of multimodal metaphors, which has not received due attention in the community. We take inspiration from the Incongruity Theory of humor, the Conceptual Metaphor Theory, and the annotation scheme behind the VU Amsterdam Metaphor Corpus, and developed a novel annotation scheme for humorous multimodal metaphor use in image-caption pairs. We create the Hummus Dataset of Humorous Multimodal Metaphor Use, providing expert annotation on 1k image-caption pairs sampled from the New Yorker Caption Contest corpus. Using the dataset, we test state-of-the-art multimodal large language models (MLLMs) on their ability to detect and understand humorous multimodal metaphor use. Our experiments show that current MLLMs still struggle with processing humorous multimodal metaphors, particularly with regard to integrating visual and textual information. We release our dataset and code at github.com/xiaoyuisrain/humorous-multimodal-metaphor-use.
Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency
For a large portion of real-life utterances, the intention cannot be solely decided by either their semantic or syntactic characteristics. Although not all the sociolinguistic and pragmatic information can be digitized, at least phonetic features are indispensable in understanding the spoken language. Especially in head-final languages such as Korean, sentence-final prosody has great importance in identifying the speaker's intention. This paper suggests a system which identifies the inherent intention of a spoken utterance given its transcript, in some cases using auxiliary acoustic features. The main point here is a separate distinction for cases where discrimination of intention requires an acoustic cue. Thus, the proposed classification system decides whether the given utterance is a fragment, statement, question, command, or a rhetorical question/command, utilizing the intonation-dependency coming from the head-finality. Based on an intuitive understanding of the Korean language that is engaged in the data annotation, we construct a network which identifies the intention of a speech, and validate its utility with the test sentences. The system, if combined with up-to-date speech recognizers, is expected to be flexibly inserted into various language understanding modules.
Grounded Misunderstandings in Asymmetric Dialogue: A Perspectivist Annotation Scheme for MapTask
Collaborative dialogue relies on participants incrementally establishing common ground, yet in asymmetric settings they may believe they agree while referring to different entities. We introduce a perspectivist annotation scheme for the HCRC MapTask corpus (Anderson et al., 1991) that separately captures speaker and addressee grounded interpretations for each reference expression, enabling us to trace how understanding emerges, diverges, and repairs over time. Using a scheme-constrained LLM annotation pipeline, we obtain 13k annotated reference expressions with reliability estimates and analyze the resulting understanding states. The results show that full misunderstandings are rare once lexical variants are unified, but multiplicity discrepancies systematically induce divergences, revealing how apparent grounding can mask referential misalignment. Our framework provides both a resource and an analytic lens for studying grounded misunderstanding and for evaluating (V)LLMs' capacity to model perspective-dependent grounding in collaborative dialogue.
Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models
The rise of social media and online communication platforms has led to the spread of Arabic textual posts and memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic text and memes. This paper explores the potential of large language models to effectively identify hope, hate speech, offensive language, and emotional expressions within such content. We evaluate the performance of base LLMs, fine-tuned LLMs, and pre-trained embedding models. The evaluation is conducted using a dataset of Arabic textual speech and memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of LLMs such as GPT-4o-mini, fine-tuned with Arabic textual speech, and Gemini Flash 2.5, fine-tuned with Arabic memes, to deliver the superior performance. They achieve up to 72.1%, 57.8%, and 79.6% macro F1 scores for tasks 1, 2, and 3, respectively, and secure first place overall in the Mahed 2025 challenge. The proposed solutions offer a more nuanced understanding of both text and memes for accurate and efficient Arabic content moderation systems.
Investigating Safety Vulnerabilities of Large Audio-Language Models Under Speaker Emotional Variations
Large audio-language models (LALMs) extend text-based LLMs with auditory understanding, offering new opportunities for multimodal applications. While their perception, reasoning, and task performance have been widely studied, their safety alignment under paralinguistic variation remains underexplored. This work systematically investigates the role of speaker emotion. We construct a dataset of malicious speech instructions expressed across multiple emotions and intensities, and evaluate several state-of-the-art LALMs. Our results reveal substantial safety inconsistencies: different emotions elicit varying levels of unsafe responses, and the effect of intensity is non-monotonic, with medium expressions often posing the greatest risk. These findings highlight an overlooked vulnerability in LALMs and call for alignment strategies explicitly designed to ensure robustness under emotional variation, a prerequisite for trustworthy deployment in real-world settings.
HPSU: A Benchmark for Human-Level Perception in Real-World Spoken Speech Understanding
Recent advances in Speech Large Language Models (Speech LLMs) have led to great progress in speech understanding tasks such as Automatic Speech Recognition (ASR) and Speech Emotion Recognition (SER). However, whether these models can achieve human-level auditory perception, particularly in terms of their ability to comprehend latent intentions and implicit emotions in real-world spoken language, remains underexplored. To this end, we introduce the Human-level Perception in Spoken Speech Understanding (HPSU), a new benchmark for fully evaluating the human-level perceptual and understanding capabilities of Speech LLMs. HPSU comprises over 20,000 expert-validated spoken language understanding samples in English and Chinese. It establishes a comprehensive evaluation framework by encompassing a spectrum of tasks, ranging from basic speaker attribute recognition to complex inference of latent intentions and implicit emotions. To address the issues of data scarcity and high cost of manual annotation in real-world scenarios, we developed a semi-automatic annotation process. This process fuses audio, textual, and visual information to enable precise speech understanding and labeling, thus enhancing both annotation efficiency and quality. We systematically evaluate various open-source and proprietary Speech LLMs. The results demonstrate that even top-performing models still fall considerably short of human capabilities in understanding genuine spoken interactions. Consequently, HPSU will be useful for guiding the development of Speech LLMs toward human-level perception and cognition.
V-HUB: A Visual-Centric Humor Understanding Benchmark for Video LLMs
AI models capable of comprehending humor hold real-world promise -- for example, enhancing engagement in human-machine interactions. To gauge and diagnose the capacity of multimodal large language models (MLLMs) for humor understanding, we introduce v-HUB, a novel visual-centric video humor understanding benchmark. v-HUB comprises a curated collection of minimally verbal short videos, sourced from classic silent films and online resources, and reflecting real-world scenarios where humor can be appreciated purely through visual cues. Each video clip is paired with rich annotations, including captions, descriptions, and explanations, supporting evaluation tasks like caption matching and humor explanation. To broaden its applicability, we further construct an open-ended video QA task, making it readily integrable into existing video understanding benchmarks. We evaluate a diverse set of MLLMs, from specialized Video-LLMs to versatile OmniLLMs that can process audio, covering both open-source and proprietary domains. The experimental results expose the difficulties MLLMs face in comprehending humor from visual cues alone. For example, all models exhibit a marked performance drop on caption matching when moving from text-based to video-based evaluation (without audio). Our findings also demonstrate that incorporating audio helps with video humor understanding, highlighting the informativeness of sound and the promise of integrating richer modalities for complex video understanding tasks.
