new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI

The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.

The Architecture Tradeoff and Risk Analysis Framework (ATRAF): A Unified Approach for Evaluating Software Architectures, Reference Architectures, and Architectural Frameworks

Modern software systems are guided by hierarchical architectural concepts -- software architectures, reference architectures, and architectural frameworks -- each operating at a distinct level of abstraction. These artifacts promote reuse, scalability, and consistency, but also embed tradeoffs that shape critical quality attributes such as modifiability, performance, and security. Existing evaluation methods, such as the Architecture Tradeoff Analysis Method (ATAM), focus on system-specific architectures and are not designed to address the broader generality and variability of higher-level architectural forms. To close this gap, we introduce the Architecture Tradeoff and Risk Analysis Framework (ATRAF) -- a unified, scenario-driven framework for evaluating tradeoffs and risks across architectural levels. ATRAF encompasses three methods: the Architecture Tradeoff and Risk Analysis Method (ATRAM), extending ATAM with enhanced risk identification for concrete systems; the Reference Architecture Tradeoff and Risk Analysis Method (RATRAM), adapting ATRAM to the evaluation of domain-level reference architectures; and the Architectural Framework Tradeoff and Risk Analysis Method (AFTRAM), supporting the evaluation of architectural frameworks that guide entire system families. All three methods follow an iterative spiral process that enables the identification of sensitivities, tradeoffs, and risks while supporting continuous refinement of architectural artifacts. We demonstrate ATRAF through progressively abstracted examples derived from the Remote Temperature Sensor (RTS) case, originally introduced in the ATAM literature. ATRAF equips architects, reference modelers, and framework designers with a practical, systematic approach for analyzing design alternatives and managing quality attribute tradeoffs early in the lifecycle and across all levels of architectural abstraction.

Dracodes Dracodes
·
May 1 1

CP-Bench: Evaluating Large Language Models for Constraint Modelling

Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.

  • 3 authors
·
Jun 6

CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process

Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.

  • 9 authors
·
Sep 26

Neurosymbolic AI -- Why, What, and How

Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.

  • 3 authors
·
May 1, 2023