Commit
·
6efed62
1
Parent(s):
fe621e1
Model uploaded
Browse files- README.md +215 -0
- config.json +26 -0
- dict.txt +0 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
CHANGED
|
@@ -1,3 +1,218 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
|
| 4 |
+
- ca
|
| 5 |
+
|
| 6 |
license: apache-2.0
|
| 7 |
+
|
| 8 |
+
tags:
|
| 9 |
+
|
| 10 |
+
- "catalan"
|
| 11 |
+
|
| 12 |
+
- "masked-lm"
|
| 13 |
+
|
| 14 |
+
- "RoBERTa-large-ca"
|
| 15 |
+
|
| 16 |
+
- "CaText"
|
| 17 |
+
|
| 18 |
+
- "Catalan Textual Corpus"
|
| 19 |
+
|
| 20 |
+
widget:
|
| 21 |
+
- text: "El Català és una llengua molt <mask>."
|
| 22 |
+
- text: "Salvador Dalí va viure a <mask>."
|
| 23 |
+
- text: "La Costa Brava té les millors <mask> d'Espanya."
|
| 24 |
+
- text: "El cacaolat és un batut de <mask>."
|
| 25 |
+
- text: "<mask> és la capital de la Garrotxa."
|
| 26 |
+
- text: "Vaig al <mask> a buscar bolets."
|
| 27 |
+
- text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
|
| 28 |
+
- text: "Catalunya és una referència en <mask> a nivell europeu."
|
| 29 |
+
|
| 30 |
---
|
| 31 |
+
|
| 32 |
+
# Catalan BERTa (roberta-large-ca) large model
|
| 33 |
+
|
| 34 |
+
## Table of Contents
|
| 35 |
+
<details>
|
| 36 |
+
<summary>Click to expand</summary>
|
| 37 |
+
|
| 38 |
+
- [Model Description](#model-description)
|
| 39 |
+
- [Intended Uses and Limitations](#intended-uses-and-limitations)
|
| 40 |
+
- [How to Use](#how-to-use)
|
| 41 |
+
- [Training](#training)
|
| 42 |
+
- [Training Data](#training-data)
|
| 43 |
+
- [Training Procedure](#training-procedure)
|
| 44 |
+
- [Evaluation](#evaluation)
|
| 45 |
+
- [CLUB Benchmark](#club-benchmark)
|
| 46 |
+
- [Evaluation Results](#evaluation-results)
|
| 47 |
+
- [Licensing Information](#licensing-information)
|
| 48 |
+
- [Citation Information](#citation-information)
|
| 49 |
+
- [Funding](#funding)
|
| 50 |
+
- [Contributions](#contributions)
|
| 51 |
+
|
| 52 |
+
</details>
|
| 53 |
+
|
| 54 |
+
## Model description
|
| 55 |
+
|
| 56 |
+
The **roberta-large-ca** is a transformer-based masked language model for the Catalan language.
|
| 57 |
+
It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) large model
|
| 58 |
+
and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
|
| 59 |
+
|
| 60 |
+
## Intended Uses and Limitations
|
| 61 |
+
|
| 62 |
+
**roberta-large-ca** model is ready-to-use only for masked language modeling to perform the Fill Mask task (try the inference API or read the next section).
|
| 63 |
+
However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification, or Named Entity Recognition.
|
| 64 |
+
|
| 65 |
+
## How to Use
|
| 66 |
+
|
| 67 |
+
Here is how to use this model:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoModelForMaskedLM
|
| 71 |
+
from transformers import AutoTokenizer, FillMaskPipeline
|
| 72 |
+
from pprint import pprint
|
| 73 |
+
tokenizer_hf = AutoTokenizer.from_pretrained('projecte-aina/roberta-large-ca')
|
| 74 |
+
model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-large-ca')
|
| 75 |
+
model.eval()
|
| 76 |
+
pipeline = FillMaskPipeline(model, tokenizer_hf)
|
| 77 |
+
text = f"Em dic <mask>."
|
| 78 |
+
res_hf = pipeline(text)
|
| 79 |
+
pprint([r['token_str'] for r in res_hf])
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## Training
|
| 83 |
+
|
| 84 |
+
### Training data
|
| 85 |
+
|
| 86 |
+
The training corpus consists of several corpora gathered from web crawling and public corpora.
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
| Corpus | Size in GB |
|
| 90 |
+
|-------------------------|------------|
|
| 91 |
+
| Catalan Crawling | 13.00 |
|
| 92 |
+
| Wikipedia | 1.10 |
|
| 93 |
+
| DOGC | 0.78 |
|
| 94 |
+
| Catalan Open Subtitles | 0.02 |
|
| 95 |
+
| Catalan Oscar | 4.00 |
|
| 96 |
+
| CaWaC | 3.60 |
|
| 97 |
+
| Cat. General Crawling | 2.50 |
|
| 98 |
+
| Cat. Goverment Crawling | 0.24 |
|
| 99 |
+
| ACN | 0.42 |
|
| 100 |
+
| Padicat | 0.63 |
|
| 101 |
+
| RacoCatalá | 8.10 |
|
| 102 |
+
| Nació Digital | 0.42 |
|
| 103 |
+
| Vilaweb | 0.06 |
|
| 104 |
+
| Tweets | 0.02 |
|
| 105 |
+
|
| 106 |
+
### Training Procedure
|
| 107 |
+
|
| 108 |
+
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
|
| 109 |
+
used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens.
|
| 110 |
+
The RoBERTa-large pretraining consists of a masked language model training that follows the approach employed for the RoBERTa large model
|
| 111 |
+
with the same hyperparameters as in the original work.
|
| 112 |
+
The training lasted a total of 96 hours with 32 NVIDIA V100 GPUs of 16GB DDRAM.
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
## Evaluation
|
| 116 |
+
|
| 117 |
+
### CLUB Benchmark
|
| 118 |
+
|
| 119 |
+
The BERTa-large model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
|
| 120 |
+
that has been created along with the model.
|
| 121 |
+
|
| 122 |
+
It contains the following tasks and their related datasets:
|
| 123 |
+
|
| 124 |
+
1. Named Entity Recognition (NER)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
**[NER (AnCora)](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
|
| 128 |
+
filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
2. Part-of-Speech Tagging (POS)
|
| 132 |
+
|
| 133 |
+
**[POS (AnCora)](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus.
|
| 134 |
+
|
| 135 |
+
3. Text Classification (TC)
|
| 136 |
+
|
| 137 |
+
**[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels.
|
| 138 |
+
|
| 139 |
+
4. Textual Entailment (TE)
|
| 140 |
+
|
| 141 |
+
**[TE-ca](https://huggingface.co/datasets/projecte-aina/teca)**: consisting of 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction, or neutral), extracted from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
|
| 142 |
+
|
| 143 |
+
5. Semantic Textual Similarity (STS)
|
| 144 |
+
|
| 145 |
+
**[STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
|
| 146 |
+
|
| 147 |
+
6. Question Answering (QA):
|
| 148 |
+
|
| 149 |
+
**[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text.
|
| 150 |
+
|
| 151 |
+
**[ViquiQuAD](https://huggingface.co/datasets/projecte-aina/viquiquad)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
|
| 152 |
+
|
| 153 |
+
**[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times.
|
| 154 |
+
|
| 155 |
+
**[XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_.
|
| 156 |
+
|
| 157 |
+
Here are the train/dev/test splits of the datasets:
|
| 158 |
+
|
| 159 |
+
| Task (Dataset) | Total | Train | Dev | Test |
|
| 160 |
+
|:--|:--|:--|:--|:--|
|
| 161 |
+
| NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 |
|
| 162 |
+
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
|
| 163 |
+
| STS (STS-ca) | 3,073 | 2,073 | 500 | 500 |
|
| 164 |
+
| TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
|
| 165 |
+
| TE (TE-ca) | 21,163 | 16,930 | 2,116 | 2,117
|
| 166 |
+
| QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 |
|
| 167 |
+
| QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
|
| 168 |
+
| QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 |
|
| 169 |
+
|
| 170 |
+
### Evaluation Results
|
| 171 |
+
|
| 172 |
+
| Task | NER (F1) | POS (F1) | STS-ca (Comb) | TeCla (Acc.) | TEca (Acc.) | VilaQuAD (F1/EM)| ViquiQuAD (F1/EM) | CatalanQA (F1/EM) | XQuAD-ca <sup>1</sup> (F1/EM) |
|
| 173 |
+
| ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----|
|
| 174 |
+
| RoBERTa-large-ca | **89.82** | **99.02** | **83.41** | **75.46** | **83.61** | **89.34**/75.50 | **89.20**/75.77 | **90.72/79.06** | **73.79**/55.34 |
|
| 175 |
+
| RoBERTa-base-ca-v2 | 89.29 | 98.96 | 79.07 | 74.26 | 83.14 | 87.74/72.58 | 88.72/**75.91** | 89.50/76.63 | 73.64/**55.42** |
|
| 176 |
+
| BERTa | 89.76 | 98.96 | 80.19 | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/77.14 | 69.20/51.47 |
|
| 177 |
+
| mBERT | 86.87 | 98.83 | 74.26 | 69.90 | 74.63 | 82.78/67.33 | 86.89/73.53 | 86.90/74.19 | 68.79/50.80 |
|
| 178 |
+
| XLM-RoBERTa | 86.31 | 98.89 | 61.61 | 70.14 | 33.30 | 86.29/71.83 | 86.88/73.11 | 88.17/75.93 | 72.55/54.16 |
|
| 179 |
+
|
| 180 |
+
<sup>1</sup> : Trained on CatalanQA, tested on XQuAD-ca.
|
| 181 |
+
|
| 182 |
+
## Licensing Information
|
| 183 |
+
|
| 184 |
+
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 185 |
+
|
| 186 |
+
## Citation Information
|
| 187 |
+
|
| 188 |
+
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
|
| 189 |
+
```bibtex
|
| 190 |
+
@inproceedings{armengol-estape-etal-2021-multilingual,
|
| 191 |
+
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
|
| 192 |
+
author = "Armengol-Estap{\'e}, Jordi and
|
| 193 |
+
Carrino, Casimiro Pio and
|
| 194 |
+
Rodriguez-Penagos, Carlos and
|
| 195 |
+
de Gibert Bonet, Ona and
|
| 196 |
+
Armentano-Oller, Carme and
|
| 197 |
+
Gonzalez-Agirre, Aitor and
|
| 198 |
+
Melero, Maite and
|
| 199 |
+
Villegas, Marta",
|
| 200 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
| 201 |
+
month = aug,
|
| 202 |
+
year = "2021",
|
| 203 |
+
address = "Online",
|
| 204 |
+
publisher = "Association for Computational Linguistics",
|
| 205 |
+
url = "https://aclanthology.org/2021.findings-acl.437",
|
| 206 |
+
doi = "10.18653/v1/2021.findings-acl.437",
|
| 207 |
+
pages = "4933--4946",
|
| 208 |
+
}
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Funding
|
| 212 |
+
|
| 213 |
+
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
|
| 214 |
+
|
| 215 |
+
## Contributions
|
| 216 |
+
|
| 217 |
+
[N/A]
|
| 218 |
+
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"RobertaForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 4096,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "roberta",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.20.1",
|
| 23 |
+
"type_vocab_size": 1,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 50262
|
| 26 |
+
}
|
dict.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb19948b086142bf513a7ad2d818c42e57edb5bfd8032c832130f5837584abfb
|
| 3 |
+
size 1421767851
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": true, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "max_len": 512, "special_tokens_map_file": null, "name_or_path": "/gpfs/projects/bsc88/tools/corpus-utils-lm/17-06-2021-python/output/jsc_ca_output/roberta-2022-03-21-1502-3a6a-69ad/train_tokenizer_output_fix/train-tokenizer-2022-03-21-1502-3a6a-0e8b"}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|