File size: 12,586 Bytes
1fe9ba8
 
7f1cee5
1fe9ba8
 
fd2a039
1fe9ba8
 
 
 
 
 
 
 
e24c1e4
1fe9ba8
 
23d08dc
e24c1e4
 
1fe9ba8
 
 
 
 
394934c
1fe9ba8
 
7f1cee5
1fe9ba8
 
 
 
2a8a8af
1fe9ba8
7f1cee5
8bd21c3
2e6d746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe9ba8
c2aef02
 
1fe9ba8
 
 
 
2474e0e
1fe9ba8
 
 
 
 
7cbe972
1fe9ba8
7cbe972
1fe9ba8
 
 
 
 
 
 
7cbe972
1fe9ba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394934c
c2aef02
 
1fe9ba8
 
c2aef02
1fe9ba8
 
 
 
 
 
 
 
 
 
 
 
1c8268d
1fe9ba8
 
1c8268d
1fe9ba8
 
b1cb73b
1fe9ba8
1c8268d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe9ba8
 
 
 
 
 
 
 
 
 
 
 
078185c
 
 
a381da9
1fe9ba8
 
 
 
 
 
 
 
 
078185c
 
 
 
a381da9
1fe9ba8
 
 
 
 
 
7cbe972
1fe9ba8
 
c2aef02
1fe9ba8
 
 
 
 
07328f3
1fe9ba8
 
 
 
 
07328f3
1fe9ba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bd21c3
1fe9ba8
2474e0e
 
8bd21c3
 
 
1fe9ba8
 
 
 
 
8bd21c3
 
1fe9ba8
a1797de
1fe9ba8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/aotgan/web-assets/model_demo.png)

# AOT-GAN: Optimized for Mobile Deployment
## High resolution image in-painting on-device


AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.

This model is an implementation of AOT-GAN found [here](https://github.com/researchmm/AOT-GAN-for-Inpainting).


This repository provides scripts to run AOT-GAN on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/aotgan).



### Model Details

- **Model Type:** Model_use_case.image_editing
- **Model Stats:**
  - Model checkpoint: CelebAHQ
  - Input resolution: 512x512
  - Number of parameters: 15.2M
  - Model size (float): 58.0 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| AOT-GAN | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 635.119 ms | 3 - 142 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 543.477 ms | 1 - 293 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 204.693 ms | 0 - 151 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 196.259 ms | 4 - 231 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 164.002 ms | 3 - 30 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 120.19 ms | 3 - 46 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 131.221 ms | 13 - 85 MB | NPU | [AOT-GAN.onnx.zip](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx.zip) |
| AOT-GAN | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 994.861 ms | 0 - 139 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 160.974 ms | 0 - 290 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 635.119 ms | 3 - 142 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 543.477 ms | 1 - 293 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 160.996 ms | 3 - 30 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 118.863 ms | 0 - 50 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 231.27 ms | 3 - 133 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 175.487 ms | 1 - 229 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 160.836 ms | 3 - 29 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 119.285 ms | 3 - 71 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 994.861 ms | 0 - 139 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 160.974 ms | 0 - 290 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 119.372 ms | 61 - 219 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 86.685 ms | 4 - 299 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 95.562 ms | 4 - 270 MB | NPU | [AOT-GAN.onnx.zip](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx.zip) |
| AOT-GAN | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 101.257 ms | 2 - 145 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 67.195 ms | 1 - 282 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 73.089 ms | 8 - 282 MB | NPU | [AOT-GAN.onnx.zip](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx.zip) |
| AOT-GAN | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 81.685 ms | 1 - 142 MB | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
| AOT-GAN | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 45.162 ms | 4 - 234 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 49.459 ms | 7 - 225 MB | NPU | [AOT-GAN.onnx.zip](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx.zip) |
| AOT-GAN | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 120.121 ms | 139 - 139 MB | NPU | [AOT-GAN.dlc](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.dlc) |
| AOT-GAN | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 134.938 ms | 33 - 33 MB | NPU | [AOT-GAN.onnx.zip](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.aotgan.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.aotgan.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.aotgan.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/aotgan/qai_hub_models/models/AOT-GAN/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.aotgan import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.aotgan.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.aotgan.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of AOT-GAN can be found
  [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
* [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).