Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -35,29 +35,29 @@ More details on model performance across various devices, can be found
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.
|
| 39 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.
|
| 40 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.
|
| 41 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.
|
| 42 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.
|
| 43 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.
|
| 44 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.
|
| 45 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.
|
| 46 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.
|
| 47 |
-
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.
|
| 48 |
-
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.
|
| 49 |
-
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.
|
| 50 |
-
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.
|
| 51 |
-
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.
|
| 52 |
-
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
## Installation
|
| 58 |
|
| 59 |
-
This model can be installed as a Python package via pip.
|
| 60 |
|
|
|
|
| 61 |
```bash
|
| 62 |
pip install qai-hub-models
|
| 63 |
```
|
|
@@ -114,7 +114,7 @@ EfficientNet-B4
|
|
| 114 |
Device : Samsung Galaxy S23 (13)
|
| 115 |
Runtime : TFLITE
|
| 116 |
Estimated inference time (ms) : 3.6
|
| 117 |
-
Estimated peak memory usage (MB): [0,
|
| 118 |
Total # Ops : 482
|
| 119 |
Compute Unit(s) : NPU (482 ops)
|
| 120 |
```
|
|
@@ -141,7 +141,7 @@ from qai_hub_models.models.efficientnet_b4 import Model
|
|
| 141 |
torch_model = Model.from_pretrained()
|
| 142 |
|
| 143 |
# Device
|
| 144 |
-
device = hub.Device("Samsung Galaxy
|
| 145 |
|
| 146 |
# Trace model
|
| 147 |
input_shape = torch_model.get_input_spec()
|
|
@@ -233,7 +233,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 233 |
|
| 234 |
|
| 235 |
## License
|
| 236 |
-
* The license for the original implementation of EfficientNet-B4 can be found
|
|
|
|
| 237 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 238 |
|
| 239 |
|
|
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.615 ms | 0 - 280 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
| 39 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.707 ms | 0 - 240 MB | FP16 | NPU | [EfficientNet-B4.so](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.so) |
|
| 40 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.564 ms | 0 - 201 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
| 41 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.627 ms | 0 - 30 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
| 42 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.688 ms | 1 - 29 MB | FP16 | NPU | [EfficientNet-B4.so](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.so) |
|
| 43 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.604 ms | 0 - 36 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
| 44 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.479 ms | 0 - 30 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
| 45 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.55 ms | 1 - 29 MB | FP16 | NPU | Use Export Script |
|
| 46 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.557 ms | 1 - 34 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
| 47 |
+
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.602 ms | 0 - 281 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
| 48 |
+
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.34 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
|
| 49 |
+
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.29 ms | 0 - 40 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
| 50 |
+
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.294 ms | 1 - 38 MB | FP16 | NPU | Use Export Script |
|
| 51 |
+
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.642 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
| 52 |
+
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.693 ms | 47 - 47 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
## Installation
|
| 58 |
|
|
|
|
| 59 |
|
| 60 |
+
Install the package via pip:
|
| 61 |
```bash
|
| 62 |
pip install qai-hub-models
|
| 63 |
```
|
|
|
|
| 114 |
Device : Samsung Galaxy S23 (13)
|
| 115 |
Runtime : TFLITE
|
| 116 |
Estimated inference time (ms) : 3.6
|
| 117 |
+
Estimated peak memory usage (MB): [0, 280]
|
| 118 |
Total # Ops : 482
|
| 119 |
Compute Unit(s) : NPU (482 ops)
|
| 120 |
```
|
|
|
|
| 141 |
torch_model = Model.from_pretrained()
|
| 142 |
|
| 143 |
# Device
|
| 144 |
+
device = hub.Device("Samsung Galaxy S24")
|
| 145 |
|
| 146 |
# Trace model
|
| 147 |
input_shape = torch_model.get_input_spec()
|
|
|
|
| 233 |
|
| 234 |
|
| 235 |
## License
|
| 236 |
+
* The license for the original implementation of EfficientNet-B4 can be found
|
| 237 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
| 238 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 239 |
|
| 240 |
|