--- library_name: pytorch license: other tags: - backbone - bu_auto - android pipeline_tag: image-classification --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/efficientnet_b4/web-assets/model_demo.png) # EfficientNet-B4: Optimized for Mobile Deployment ## Imagenet classifier and general purpose backbone EfficientNetB4 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is an implementation of EfficientNet-B4 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py). This repository provides scripts to run EfficientNet-B4 on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/efficientnet_b4). ### Model Details - **Model Type:** Model_use_case.image_classification - **Model Stats:** - Model checkpoint: Imagenet - Input resolution: 380x380 - Number of parameters: 19.3M - Model size (float): 73.6 MB - Model size (w8a16): 24.0 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | EfficientNet-B4 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 12.243 ms | 0 - 69 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 11.889 ms | 1 - 38 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.901 ms | 0 - 89 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.703 ms | 0 - 50 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 3.327 ms | 0 - 424 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.176 ms | 0 - 75 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 3.263 ms | 0 - 109 MB | NPU | [EfficientNet-B4.onnx.zip](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx.zip) | | EfficientNet-B4 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.344 ms | 0 - 69 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.208 ms | 0 - 37 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.43 ms | 0 - 88 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.324 ms | 1 - 53 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.355 ms | 0 - 48 MB | NPU | [EfficientNet-B4.onnx.zip](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx.zip) | | EfficientNet-B4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.952 ms | 0 - 73 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.832 ms | 1 - 42 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.93 ms | 0 - 40 MB | NPU | [EfficientNet-B4.onnx.zip](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx.zip) | | EfficientNet-B4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.592 ms | 0 - 73 MB | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) | | EfficientNet-B4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.516 ms | 0 - 41 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.66 ms | 0 - 43 MB | NPU | [EfficientNet-B4.onnx.zip](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx.zip) | | EfficientNet-B4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.474 ms | 267 - 267 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.dlc) | | EfficientNet-B4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.248 ms | 45 - 45 MB | NPU | [EfficientNet-B4.onnx.zip](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx.zip) | | EfficientNet-B4 | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 8.638 ms | 0 - 116 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.554 ms | 0 - 59 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.136 ms | 0 - 70 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.382 ms | 0 - 17 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.837 ms | 0 - 59 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.283 ms | 0 - 83 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.583 ms | 0 - 67 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 3.612 ms | 0 - 69 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.32 ms | 0 - 63 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | | EfficientNet-B4 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.729 ms | 99 - 99 MB | NPU | [EfficientNet-B4.dlc](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4_w8a16.dlc) | ## Installation Install the package via pip: ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.efficientnet_b4.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.efficientnet_b4.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.efficientnet_b4.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/efficientnet_b4/qai_hub_models/models/EfficientNet-B4/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.efficientnet_b4 import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S25") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.efficientnet_b4.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.efficientnet_b4.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on EfficientNet-B4's performance across various devices [here](https://aihub.qualcomm.com/models/efficientnet_b4). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of EfficientNet-B4 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).