File size: 4,313 Bytes
16eb15e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gc

import PIL.Image
import torch

from stable_diffusion_xl_partedit import PartEditPipeline, DotDictExtra, Binarization, PaddingStrategy, EmptyControl
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPImageProcessor

from huggingface_hub import hf_hub_download

available_pts = [
    "pt/torso_custom.pt", # this is human torso only
    "pt/chair_custom.pt", # this is seat of the chair only
    "pt/carhood_custom.pt", 
    "pt/partimage_biped_head.pt", # this is essentially monkeys
    "pt/partimage_carbody.pt", # this is everything except the wheels
    "pt/partimage_human_hair.pt", 
    "pt/partimage_human_head.pt", # this is essentially faces
    "pt/partimage_human_torso.pt", # use custom on in favour of this one
    "pt/partimage_quadruped_head.pt", # this is essentially animals on 4 legs
]

def download_part(index):
    return hf_hub_download(
        repo_id="Aleksandar/PartEdit-extra",
        repo_type="dataset",
        filename=available_pts[index]
    )

PART_TOKENS = {
    "human_head": download_part(6),
    "human_hair": download_part(5),
    "human_torso_custom": download_part(0), # custom one
    "chair_custom": download_part(1),
    "carhood_custom": download_part(2),
    "carbody": download_part(4),
    "biped_head": download_part(8),
    "quadruped_head": download_part(3),
    "human_torso": download_part(7), # based on partimage
}


class PartEditSDXLModel:
    MAX_NUM_INFERENCE_STEPS = 50

    def __init__(self):
        if torch.cuda.is_available():
            self.device = torch.device(f"cuda:{torch.cuda.current_device()}" if torch.cuda.is_available() else "cpu")
            self.sd_pipe, self.partedit_pipe = PartEditPipeline.default_pipeline(self.device)
        else:
            self.pipe = None

    def generate(
        self,
        prompt: str,
        negative_prompt: str = "",
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        seed: int = 0,
        eta: float = 0,
    ) -> PIL.Image.Image:

        if not torch.cuda.is_available():
            raise RuntimeError("This demo does not work on CPU!")

        out = self.sd_pipe(
            prompt=prompt,
            # negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            eta=eta,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]

        gc.collect()
        torch.cuda.empty_cache()
        return out

    def edit(
        self,
        prompt: str,
        subject: str,
        part: str,
        edit: str,
        negative_prompt: str = "",
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        seed: int = 0,
        eta: int = 0,
        t_e: int = 50,
    ) -> PIL.Image.Image:

        # Sanity Checks
        if not torch.cuda.is_available():
            raise RuntimeError("This demo does not work on CPU!")

        if part in PART_TOKENS:
            token_path = PART_TOKENS[part]
        else:
            raise ValueError(f"Part `{part}` is not supported!")

        if subject not in prompt:
            raise ValueError(f"The subject `{subject}` does not exist in the original prompt!")

        prompts = [
            prompt,
            prompt.replace(subject, edit),
        ]

        # PartEdit Parameters
        cross_attention_kwargs = {
            "edit_type": "replace",
            "n_self_replace": 0.0,
            "n_cross_replace": {"default_": 1.0, edit: 0.4},
        }
        extra_params = DotDictExtra()
        extra_params.update({"omega": 1.5, "edit_steps": t_e})

        out = self.partedit_pipe(
            prompt=prompts,
            # negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            eta=eta,
            generator=torch.Generator().manual_seed(seed),
            cross_attention_kwargs=cross_attention_kwargs,
            extra_kwargs=extra_params,
            embedding_opt=token_path,
        ).images[:2][::-1]

        mask = self.partedit_pipe.visualize_map_across_time()
        gc.collect()
        torch.cuda.empty_cache()
        return out, mask