import os import json import time import random from collections import defaultdict from datetime import date, datetime, timedelta import gradio as gr import pandas as pd import finnhub from io import StringIO import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry from huggingface_hub import InferenceClient, hf_hub_download try: from llama_cpp import Llama except Exception: Llama = None try: import torch except Exception: torch = None import psutil # Suppress Google Cloud warnings os.environ['GRPC_VERBOSITY'] = 'ERROR' os.environ['GRPC_TRACE'] = '' # Suppress other warnings import warnings warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=FutureWarning) # ---------- CẤU HÌNH --------------------------------------------------------- # Model and Inference configuration (Hugging Face Inference API) FIN_MODEL_ID = "TheFinAI/Fin-o1-14B" # RapidAPI Configuration RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com" # Load Finnhub API keys from single secret (multiple keys separated by newlines) FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "") if FINNHUB_KEYS_RAW: FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()] else: FINNHUB_KEYS = [] # Load RapidAPI keys from single secret (multiple keys separated by newlines) RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "") if RAPIDAPI_KEYS_RAW: RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()] else: RAPIDAPI_KEYS = [] # Hugging Face token (support multiple common env var names) HF_TOKEN = ( os.getenv("HF_TOKEN") or os.getenv("HF_API_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HUGGINGFACE_TOKEN") or "" ) # Optional local GGUF configuration for CPU inference via llama.cpp FIN_GGUF_PATH = os.getenv("FIN_GGUF_PATH", "").strip() FIN_GGUF_REPO = os.getenv("FIN_GGUF_REPO", "").strip() # e.g., "TheFinAI/Fin-o1-14B-GGUF" FIN_GGUF_FILE = os.getenv("FIN_GGUF_FILE", "").strip() # e.g., "fino1-14b-q4_k_m.gguf" # Filter out empty keys FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()] # Validate that we have at least one key for each service if not FINNHUB_KEYS: print("⚠️ Warning: No Finnhub API keys found in secrets") if not RAPIDAPI_KEYS: print("⚠️ Warning: No RapidAPI keys found in secrets") if not HF_TOKEN: print("⚠️ Warning: No Hugging Face token (HF_TOKEN) found in secrets – Fin-o1-14B will use mock responses") # Initialize inference backends (prefer local GGUF if provided) hf_client = None llama_local = None # Try resolve GGUF path from repo if not directly provided if not FIN_GGUF_PATH and FIN_GGUF_REPO and FIN_GGUF_FILE: try: FIN_GGUF_PATH = hf_hub_download(repo_id=FIN_GGUF_REPO, filename=FIN_GGUF_FILE) print(f"✅ Downloaded GGUF from {FIN_GGUF_REPO}/{FIN_GGUF_FILE}") except Exception as e: print(f"⚠️ Failed to download GGUF: {e}") if FIN_GGUF_PATH and Llama is not None: try: llama_local = Llama( model_path=FIN_GGUF_PATH, n_ctx=8192, logits_all=False, n_threads=max(1, os.cpu_count() or 2), ) print(f"✅ Local llama.cpp initialized with GGUF at {FIN_GGUF_PATH}") except Exception as e: print(f"⚠️ Failed to initialize local llama.cpp: {e}") if llama_local is None and HF_TOKEN: try: hf_client = InferenceClient(model=FIN_MODEL_ID, token=HF_TOKEN, timeout=60) print(f"✅ Hugging Face Inference Client initialized for {FIN_MODEL_ID}") except Exception as e: print(f"⚠️ Failed to initialize HF Inference Client: {e}") print("=" * 50) print("🚀 FinRobot Forecaster Starting Up...") print("=" * 50) if FINNHUB_KEYS: print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded") else: print("📊 Finnhub API: Not configured") if RAPIDAPI_KEYS: print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)") else: print("📈 RapidAPI Alpha Vantage: Not configured") if HF_TOKEN: print("🤖 HF Inference: Token detected for Fin-o1-14B") else: print("🤖 HF Inference: No token provided (mock responses will be used)") print("✅ Application started successfully!") print("=" * 50) # Cấu hình Google Generative AI (if keys available) # No Gemini setup needed; using HF Inference API instead if llama_local is not None: print("🤖 LLM: Fin-o1-14B via local GGUF (llama.cpp, CPU)") else: print("🤖 LLM: Fin-o1-14B via Hugging Face Inference API") # Cấu hình Finnhub client (if keys available) if FINNHUB_KEYS: # Configure with first key for initial setup finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0]) print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys") else: finnhub_client = None print("⚠️ Finnhub not configured - will use mock news data") # Tạo session với retry strategy cho requests def create_session(): session = requests.Session() retry_strategy = Retry( total=3, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504], ) adapter = HTTPAdapter(max_retries=retry_strategy) session.mount("http://", adapter) session.mount("https://", adapter) return session # Tạo session global requests_session = create_session() SYSTEM_PROMPT = ( "You are a seasoned stock-market analyst. " "Given recent company news and optional basic financials, " "return:\n" "[Positive Developments] – 2-4 bullets\n" "[Potential Concerns] – 2-4 bullets\n" "[Prediction & Analysis] – a one-week price outlook with rationale." ) # ---------- UTILITY HELPERS ---------------------------------------- def today() -> str: return date.today().strftime("%Y-%m-%d") def n_weeks_before(date_string: str, n: int) -> str: return (datetime.strptime(date_string, "%Y-%m-%d") - timedelta(days=7 * n)).strftime("%Y-%m-%d") # ---------- DATA FETCHING -------------------------------------------------- def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: # Thử tất cả RapidAPI Alpha Vantage keys for rapidapi_key in RAPIDAPI_KEYS: try: print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)") # RapidAPI Alpha Vantage endpoint url = f"https://{RAPIDAPI_HOST}/query" headers = { "X-RapidAPI-Host": RAPIDAPI_HOST, "X-RapidAPI-Key": rapidapi_key } params = { "function": "TIME_SERIES_DAILY", "symbol": symbol, "outputsize": "full", "datatype": "csv" } # Thử lại 3 lần với RapidAPI key hiện tại for attempt in range(3): try: resp = requests_session.get(url, headers=headers, params=params, timeout=30) if not resp.ok: print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}") time.sleep(2 ** attempt) continue text = resp.text.strip() if text.startswith("{"): info = resp.json() msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info) if "rate limit" in msg.lower() or "quota" in msg.lower(): print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key") break # Thử key tiếp theo raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}") # Parse CSV data df = pd.read_csv(StringIO(text)) date_col = "timestamp" if "timestamp" in df.columns else df.columns[0] df[date_col] = pd.to_datetime(df[date_col]) df = df.sort_values(date_col).set_index(date_col) data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} for i in range(len(steps) - 1): s_date = pd.to_datetime(steps[i]) e_date = pd.to_datetime(steps[i+1]) seg = df.loc[s_date:e_date] if seg.empty: raise RuntimeError( f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]} – {steps[i+1]}" ) data["Start Date"].append(seg.index[0]) data["Start Price"].append(seg["close"].iloc[0]) data["End Date"].append(seg.index[-1]) data["End Price"].append(seg["close"].iloc[-1]) time.sleep(1) # RapidAPI has higher limits print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)") return pd.DataFrame(data) except requests.exceptions.Timeout: print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}") if attempt < 2: time.sleep(5 * (attempt + 1)) continue else: break except requests.exceptions.RequestException as e: print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}") if attempt < 2: time.sleep(3) continue else: break except Exception as e: print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}") continue # Thử key tiếp theo # Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail print("⚠️ All RapidAPI keys failed, using mock data for demonstration...") return create_mock_stock_data(symbol, steps) def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: """Tạo mock data để demo khi API không hoạt động""" import numpy as np data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} # Giá cơ bản khác nhau cho các symbol khác nhau base_prices = { "AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0, "TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0 } base_price = base_prices.get(symbol.upper(), 150.0) for i in range(len(steps) - 1): s_date = pd.to_datetime(steps[i]) e_date = pd.to_datetime(steps[i+1]) # Tạo giá ngẫu nhiên với xu hướng tăng nhẹ start_price = base_price + np.random.normal(0, 5) end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ data["Start Date"].append(s_date) data["Start Price"].append(round(start_price, 2)) data["End Date"].append(e_date) data["End Price"].append(round(end_price, 2)) base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo return pd.DataFrame(data) def current_basics(symbol: str, curday: str) -> dict: # Check if Finnhub is configured if not FINNHUB_KEYS: print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}") return {} # Thử với tất cả các Finnhub API keys for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) # Thêm timeout cho Finnhub client raw = client.company_basic_financials(symbol, "all") if not raw["series"]: continue merged = defaultdict(dict) for metric, vals in raw["series"]["quarterly"].items(): for v in vals: merged[v["period"]][metric] = v["v"] latest = max((p for p in merged if p <= curday), default=None) if latest is None: continue d = dict(merged[latest]) d["period"] = latest return d except Exception as e: print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}") time.sleep(2) # Thêm delay trước khi thử key tiếp theo continue return {} def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame: news_col = [] for _, row in df.iterrows(): start = row["Start Date"].strftime("%Y-%m-%d") end = row["End Date"].strftime("%Y-%m-%d") time.sleep(2) # Tăng delay để tránh rate limit # Check if Finnhub is configured if not FINNHUB_KEYS: print(f"⚠️ Finnhub not configured, using mock news for {symbol}") news_data = create_mock_news(symbol, start, end) news_col.append(json.dumps(news_data)) continue # Thử với tất cả các Finnhub API keys news_data = [] for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) weekly = client.company_news(symbol, _from=start, to=end) weekly_fmt = [ { "date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"), "headline": n["headline"], "summary" : n["summary"], } for n in weekly ] weekly_fmt.sort(key=lambda x: x["date"]) news_data = weekly_fmt break # Thành công, thoát khỏi loop except Exception as e: print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}") time.sleep(3) # Thêm delay trước khi thử key tiếp theo continue # Nếu không có news data, tạo mock news if not news_data: news_data = create_mock_news(symbol, start, end) news_col.append(json.dumps(news_data)) df["News"] = news_col return df def create_mock_news(symbol: str, start: str, end: str) -> list: """Tạo mock news data khi API không hoạt động""" mock_news = [ { "date": f"{start}120000", "headline": f"{symbol} Shows Strong Performance in Recent Trading", "summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment." }, { "date": f"{end}090000", "headline": f"Analysts Maintain Positive Outlook for {symbol}", "summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects." } ] return mock_news # ---------- PROMPT CONSTRUCTION ------------------------------------------- def sample_news(news: list[str], k: int = 5) -> list[str]: if len(news) <= k: return news return [news[i] for i in sorted(random.sample(range(len(news)), k))] def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str: # Thử với tất cả các Finnhub API keys để lấy company profile company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n" if FINNHUB_KEYS: for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) prof = client.company_profile2(symbol=symbol) company_blurb = ( f"[Company Introduction]:\n{prof['name']} operates in the " f"{prof['finnhubIndustry']} sector ({prof['country']}). " f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} " f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n" ) break # Thành công, thoát khỏi loop except Exception as e: print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}") time.sleep(2) # Thêm delay trước khi thử key tiếp theo continue else: print(f"⚠️ Finnhub not configured, using basic company info for {symbol}") # Past weeks block past_block = "" for _, row in df.iterrows(): term = "increased" if row["End Price"] > row["Start Price"] else "decreased" head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, " f"{symbol}'s stock price {term} from " f"{row['Start Price']:.2f} to {row['End Price']:.2f}.") news_items = json.loads(row["News"]) summaries = [ f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n" for n in news_items if not n["summary"].startswith("Looking for stock market analysis") ] past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5)) # Optional basic financials if use_basics: basics = current_basics(symbol, curday) if basics: basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period") basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n") else: basics_block = "\n[Basic Financials]: not available\n" else: basics_block = "\n[Basic Financials]: not requested\n" horizon = f"{curday} to {n_weeks_before(curday, -1)}" final_user_msg = ( company_blurb + past_block + basics_block + f"\nBased on all information before {curday}, analyse positive " "developments and potential concerns for {symbol}, then predict its " f"price movement for next week ({horizon})." ) return final_user_msg # ---------- LLM CALL ------------------------------------------------------- def chat_completion(prompt: str, model: str = FIN_MODEL_ID, temperature: float = 0.2, stream: bool = False, symbol: str = "STOCK") -> str: full_prompt = f"{SYSTEM_PROMPT}\n\n{prompt}" # Prefer local llama.cpp if available if llama_local is not None: try: params = { "max_tokens": 800, "temperature": temperature, "top_p": 0.9, "repeat_penalty": 1.05, "stop": ["", "\n\n\n"], } if stream: collected = [] for token in llama_local( full_prompt, stream=True, **params, ): if token and "choices" in token and token["choices"]: t = token["choices"][0].get("text", "") print(t, end="", flush=True) collected.append(t) print() return "".join(collected) else: out = llama_local(full_prompt, **params) return out["choices"][0]["text"] except Exception as e: print(f"⚠️ Local llama.cpp error: {e}") # Fallback to HF Inference API if hf_client is not None: gen_kwargs = { "max_new_tokens": 800, "temperature": temperature, "top_p": 0.9, "do_sample": True, "repetition_penalty": 1.05, "return_full_text": False, } try: if stream: collected = [] for event in hf_client.text_generation(full_prompt, stream=True, **gen_kwargs): if isinstance(event, str): print(event, end="", flush=True) collected.append(event) print() return "".join(collected) else: output = hf_client.text_generation(full_prompt, **gen_kwargs) return output except Exception as e: print(f"⚠️ HF Inference error for {model}: {e}") # Last resort print(f"⚠️ No LLM backend available, using mock response for {symbol}") return create_mock_ai_response(symbol) # ---------- DEBUG INFO ------------------------------------------------------- def get_debug_info() -> str: lines = [] # Backend/model backend = ( "local-gguf-llama.cpp" if llama_local is not None else ( "hf-inference" if hf_client is not None else "mock") ) model_name = FIN_MODEL_ID if hf_client is not None else (os.path.basename(FIN_GGUF_PATH) if FIN_GGUF_PATH else "mock-model") lines.append(f"Backend: {backend}") lines.append(f"Model: {model_name}") # Libraries try: import gradio as _gr gradio_ver = getattr(_gr, "__version__", "unknown") except Exception: gradio_ver = "unavailable" try: import pandas as _pd pandas_ver = getattr(_pd, "__version__", "unknown") except Exception: pandas_ver = "unavailable" try: import requests as _req requests_ver = getattr(_req, "__version__", "unknown") except Exception: requests_ver = "unavailable" llama_cpp_ver = "available" if Llama is not None else "unavailable" hf_hub_ver = getattr(InferenceClient, "__module__", "huggingface_hub") lines.append(f"Libraries: gradio={gradio_ver}, pandas={pandas_ver}, requests={requests_ver}, llama_cpp={llama_cpp_ver}, hf_hub={hf_hub_ver}") # Torch if torch is not None: lines.append(f"torch: {torch.__version__}, cuda_available={torch.cuda.is_available() if hasattr(torch, 'cuda') else False}") else: lines.append("torch: unavailable") # System CPU/RAM try: cpu_percent = psutil.cpu_percent(interval=0.5) ram = psutil.virtual_memory() lines.append(f"CPU: {cpu_percent}%") lines.append(f"RAM: {ram.percent}% used ({round(ram.used/1e9,2)}GB/{round(ram.total/1e9,2)}GB)") except Exception as e: lines.append(f"System: psutil error: {e}") # Env flags lines.append(f"HF_TOKEN set: {'yes' if bool(HF_TOKEN) else 'no'}") lines.append(f"FIN_GGUF_PATH: {FIN_GGUF_PATH or '-'}") lines.append(f"FIN_GGUF_REPO/FILE: {FIN_GGUF_REPO or '-'} / {FIN_GGUF_FILE or '-'}") return "\n".join(lines) def create_mock_ai_response(symbol: str) -> str: """Tạo mock AI response khi LLM API không hoạt động""" return f""" [Positive Developments] • Strong market position and brand recognition for {symbol} • Recent quarterly earnings showing growth potential • Positive analyst sentiment and institutional investor interest • Technological innovation and market expansion opportunities [Potential Concerns] • Market volatility and economic uncertainty • Competitive pressures in the industry • Regulatory changes that may impact operations • Global economic factors affecting stock performance [Prediction & Analysis] Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns. Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals. """ # ---------- MAIN PREDICTION FUNCTION ----------------------------------------- def predict(symbol: str = "AAPL", curday: str = today(), n_weeks: int = 3, use_basics: bool = False, stream: bool = False) -> tuple[str, str]: try: steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1] df = get_stock_data(symbol, steps) df = attach_news(symbol, df) prompt_info = make_prompt(symbol, df, curday, use_basics) answer = chat_completion(prompt_info, stream=stream, symbol=symbol) return prompt_info, answer except Exception as e: error_msg = f"Error in prediction: {str(e)}" print(f"Prediction error: {e}") # Log the error for debugging return error_msg, error_msg # ---------- HUGGINGFACE SPACES INTERFACE ----------------------------------------- def hf_predict(symbol, n_weeks, use_basics): # 1. get curday curday = date.today().strftime("%Y-%m-%d") # 2. call predict prompt, answer = predict( symbol=symbol.upper(), curday=curday, n_weeks=int(n_weeks), use_basics=bool(use_basics), stream=False ) return prompt, answer # ---------- GRADIO INTERFACE ----------------------------------------- def create_interface(): with gr.Blocks( title="FinRobot Forecaster (Fin-o1-14B)", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1200px !important; margin: auto !important; } #model_prompt_textbox textarea { overflow-y: auto !important; max-height: none !important; min-height: 400px !important; resize: vertical !important; white-space: pre-wrap !important; word-wrap: break-word !important; height: auto !important; } #model_prompt_textbox { height: auto !important; } #analysis_results_textbox textarea { overflow-y: auto !important; max-height: none !important; min-height: 400px !important; resize: vertical !important; white-space: pre-wrap !important; word-wrap: break-word !important; height: auto !important; } #analysis_results_textbox { height: auto !important; } .textarea textarea { overflow-y: auto !important; max-height: 500px !important; resize: vertical !important; } .textarea { height: auto !important; min-height: 300px !important; } .gradio-textbox { height: auto !important; max-height: none !important; } .gradio-textbox textarea { height: auto !important; max-height: none !important; overflow-y: auto !important; } """ ) as demo: gr.Markdown(""" # 🤖 FinRobot Forecaster (Fin-o1-14B) **AI-powered stock market analysis and prediction using TheFinAI/Fin-o1-14B** This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions. Model: `TheFinAI/Fin-o1-14B` via Hugging Face Inference API (CPU-friendly inference). If no `HF_TOKEN` is set, mock responses will be used for demonstration. """) with gr.Row(): with gr.Column(scale=1): symbol = gr.Textbox( label="Stock Symbol", value="AAPL", placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)", info="Enter the ticker symbol of the stock you want to analyze" ) n_weeks = gr.Slider( 1, 6, value=3, step=1, label="Historical Weeks to Analyze", info="Number of weeks of historical data to include in analysis" ) use_basics = gr.Checkbox( label="Include Basic Financials", value=True, info="Include basic financial metrics in the analysis" ) btn = gr.Button( "🚀 Run Analysis", variant="primary" ) with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("📊 Analysis Results"): gr.Markdown("**AI Analysis & Prediction**") output_answer = gr.Textbox( label="", lines=40, show_copy_button=True, interactive=False, placeholder="AI analysis and predictions will appear here...", container=True, scale=1, elem_id="analysis_results_textbox" ) with gr.Tab("🔍 Model Prompt"): gr.Markdown("**Generated Prompt**") output_prompt = gr.Textbox( label="", lines=40, show_copy_button=True, interactive=False, placeholder="Generated prompt will appear here...", container=True, scale=1, elem_id="model_prompt_textbox" ) with gr.Tab("🧰 Debug"): gr.Markdown("**Runtime Debug Information**") debug_box = gr.Textbox( label="", lines=30, show_copy_button=True, interactive=False, value=get_debug_info(), container=True, scale=1, ) refresh_btn = gr.Button("🔄 Refresh Debug Info") # Examples gr.Examples( examples=[ ["AAPL", 3, False], ["MSFT", 4, True], ["GOOGL", 2, False], ["TSLA", 5, True], ["NVDA", 3, True] ], inputs=[symbol, n_weeks, use_basics], label="💡 Try these examples" ) # Event handlers btn.click( fn=hf_predict, inputs=[symbol, n_weeks, use_basics], outputs=[output_prompt, output_answer], show_progress=True ) # Refresh debug info on demand and after run refresh_btn.click( fn=lambda: get_debug_info(), inputs=[], outputs=[debug_box], ) btn.click( fn=lambda: get_debug_info(), inputs=[], outputs=[debug_box], ) # Footer gr.Markdown(""" --- **Disclaimer**: This application is for educational and research purposes only. The predictions and analysis provided should not be considered as financial advice. Always consult with qualified financial professionals before making investment decisions. """) return demo # ---------- MAIN EXECUTION ----------------------------------------- if __name__ == "__main__": demo = create_interface() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=False, quiet=True )