import os import json import time import random from collections import defaultdict from datetime import date, datetime, timedelta import gradio as gr import pandas as pd import finnhub from huggingface_hub import hf_hub_download from llama_cpp import Llama from io import StringIO import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import sys import platform import psutil from importlib import metadata # Suppress Google Cloud warnings os.environ['GRPC_VERBOSITY'] = 'ERROR' os.environ['GRPC_TRACE'] = '' # Suppress other warnings import warnings warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=FutureWarning) # ---------- CẤU HÌNH --------------------------------------------------------- # Local GGUF model settings (CPU-only) LLAMA_REPO_ID = "mradermacher/Fin-o1-8B-GGUF" LLAMA_FILENAME = os.getenv("FIN_O1_GGUF_FILENAME", "Fin-o1-8B.Q4_K_S.gguf") LLAMA_CTX = int(os.getenv("FIN_O1_CTX", "4096")) LLAMA_THREADS = int(os.getenv("FIN_O1_THREADS", str(max(1, (os.cpu_count() or 2) - 0)))) LLAMA_N_GPU_LAYERS = 0 # CPU Spaces only # RapidAPI Configuration RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com" # Load Finnhub API keys from single secret (multiple keys separated by newlines) FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "") if FINNHUB_KEYS_RAW: FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()] else: FINNHUB_KEYS = [] # Load RapidAPI keys from single secret (multiple keys separated by newlines) RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "") if RAPIDAPI_KEYS_RAW: RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()] else: RAPIDAPI_KEYS = [] GOOGLE_API_KEYS = [] # Not used; we run local GGUF # Filter out empty keys FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()] GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key.strip()] # Validate that we have at least one key for each service if not FINNHUB_KEYS: print("⚠️ Warning: No Finnhub API keys found in secrets") if not RAPIDAPI_KEYS: print("⚠️ Warning: No RapidAPI keys found in secrets") if True: pass # Chọn ngẫu nhiên một khóa API để bắt đầu (if available) GOOGLE_API_KEY = random.choice(GOOGLE_API_KEYS) if GOOGLE_API_KEYS else None print("=" * 50) print("🚀 FinRobot Forecaster Starting Up...") print("=" * 50) if FINNHUB_KEYS: print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded") else: print("📊 Finnhub API: Not configured") if RAPIDAPI_KEYS: print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)") else: print("📈 RapidAPI Alpha Vantage: Not configured") if GOOGLE_API_KEYS: print(f"🤖 Google Gemini API: {len(GOOGLE_API_KEYS)} keys loaded") else: print("🤖 Google Gemini API: Not configured") print("✅ Application started successfully!") print("=" * 50) # Initialize local llama.cpp model (download if needed) llm: Llama | None = None try: print("🧠 Initializing local Fin-o1 GGUF model via llama.cpp...") gguf_path = hf_hub_download(repo_id=LLAMA_REPO_ID, filename=LLAMA_FILENAME, local_files_only=False) llm = Llama( model_path=gguf_path, n_ctx=LLAMA_CTX, n_threads=LLAMA_THREADS, n_gpu_layers=LLAMA_N_GPU_LAYERS, verbose=False, ) print(f"✅ Loaded GGUF model: {LLAMA_REPO_ID}/{LLAMA_FILENAME} (ctx={LLAMA_CTX}, threads={LLAMA_THREADS})") except Exception as e: print(f"⚠️ Failed to initialize local GGUF model: {e}") llm = None # ---------- DEBUG / DIAGNOSTICS --------------------------------------------- def get_package_version_safe(package_name: str) -> str: try: return metadata.version(package_name) except Exception: return "not installed" def build_debug_info() -> str: torch_version = "not installed" try: import torch # type: ignore torch_version = getattr(torch, "__version__", "unknown") except Exception: pass process = psutil.Process() mem = psutil.virtual_memory() cpu_percent = psutil.cpu_percent(interval=0.2) proc_mem = process.memory_info().rss lines = [] # Model lines.append("[Model]") lines.append(f"Name: {LLAMA_FILENAME}") lines.append(f"Repo: {LLAMA_REPO_ID}") lines.append(f"Loaded: {bool(llm)}") lines.append(f"Context Length: {LLAMA_CTX}") lines.append(f"Threads: {LLAMA_THREADS}") lines.append(f"GPU Layers: {LLAMA_N_GPU_LAYERS}") # Libraries lines.append("\n[Libraries]") lines.append(f"python: {sys.version.split()[0]}") lines.append(f"gradio: {get_package_version_safe('gradio')}") lines.append(f"pandas: {get_package_version_safe('pandas')}") lines.append(f"requests: {get_package_version_safe('requests')}") lines.append(f"huggingface_hub: {get_package_version_safe('huggingface-hub')}") lines.append(f"llama_cpp_python: {get_package_version_safe('llama-cpp-python')}") lines.append(f"torch: {torch_version}") # System lines.append("\n[System]") lines.append(f"OS: {platform.system()} {platform.release()} ({platform.machine()})") lines.append(f"CPU Cores: {os.cpu_count()}") lines.append(f"CPU Usage: {cpu_percent:.1f}%") lines.append(f"RAM Total: {mem.total/ (1024**3):.2f} GB") lines.append(f"RAM Used: {mem.used/ (1024**3):.2f} GB ({mem.percent:.1f}%)") lines.append(f"Process RSS: {proc_mem/ (1024**2):.1f} MB") return "\n".join(lines) # Cấu hình Finnhub client (if keys available) if FINNHUB_KEYS: # Configure with first key for initial setup finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0]) print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys") else: finnhub_client = None print("⚠️ Finnhub not configured - will use mock news data") # Tạo session với retry strategy cho requests def create_session(): session = requests.Session() retry_strategy = Retry( total=3, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504], ) adapter = HTTPAdapter(max_retries=retry_strategy) session.mount("http://", adapter) session.mount("https://", adapter) return session # Tạo session global requests_session = create_session() SYSTEM_PROMPT = ( "You are a seasoned stock-market analyst. " "Given recent company news and optional basic financials, " "return:\n" "[Positive Developments] – 2-4 bullets\n" "[Potential Concerns] – 2-4 bullets\n" "[Prediction & Analysis] – a one-week price outlook with rationale." ) # ---------- UTILITY HELPERS ---------------------------------------- def today() -> str: return date.today().strftime("%Y-%m-%d") def n_weeks_before(date_string: str, n: int) -> str: return (datetime.strptime(date_string, "%Y-%m-%d") - timedelta(days=7 * n)).strftime("%Y-%m-%d") # ---------- DATA FETCHING -------------------------------------------------- def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: # Thử tất cả RapidAPI Alpha Vantage keys for rapidapi_key in RAPIDAPI_KEYS: try: print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)") # RapidAPI Alpha Vantage endpoint url = f"https://{RAPIDAPI_HOST}/query" headers = { "X-RapidAPI-Host": RAPIDAPI_HOST, "X-RapidAPI-Key": rapidapi_key } params = { "function": "TIME_SERIES_DAILY", "symbol": symbol, "outputsize": "full", "datatype": "csv" } # Thử lại 3 lần với RapidAPI key hiện tại for attempt in range(3): try: resp = requests_session.get(url, headers=headers, params=params, timeout=30) if not resp.ok: print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}") time.sleep(2 ** attempt) continue text = resp.text.strip() if text.startswith("{"): info = resp.json() msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info) if "rate limit" in msg.lower() or "quota" in msg.lower(): print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key") break # Thử key tiếp theo raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}") # Parse CSV data df = pd.read_csv(StringIO(text)) date_col = "timestamp" if "timestamp" in df.columns else df.columns[0] df[date_col] = pd.to_datetime(df[date_col]) df = df.sort_values(date_col).set_index(date_col) data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} for i in range(len(steps) - 1): s_date = pd.to_datetime(steps[i]) e_date = pd.to_datetime(steps[i+1]) seg = df.loc[s_date:e_date] if seg.empty: raise RuntimeError( f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]} – {steps[i+1]}" ) data["Start Date"].append(seg.index[0]) data["Start Price"].append(seg["close"].iloc[0]) data["End Date"].append(seg.index[-1]) data["End Price"].append(seg["close"].iloc[-1]) time.sleep(1) # RapidAPI has higher limits print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)") return pd.DataFrame(data) except requests.exceptions.Timeout: print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}") if attempt < 2: time.sleep(5 * (attempt + 1)) continue else: break except requests.exceptions.RequestException as e: print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}") if attempt < 2: time.sleep(3) continue else: break except Exception as e: print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}") continue # Thử key tiếp theo # Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail print("⚠️ All RapidAPI keys failed, using mock data for demonstration...") return create_mock_stock_data(symbol, steps) def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame: """Tạo mock data để demo khi API không hoạt động""" import numpy as np data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []} # Giá cơ bản khác nhau cho các symbol khác nhau base_prices = { "AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0, "TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0 } base_price = base_prices.get(symbol.upper(), 150.0) for i in range(len(steps) - 1): s_date = pd.to_datetime(steps[i]) e_date = pd.to_datetime(steps[i+1]) # Tạo giá ngẫu nhiên với xu hướng tăng nhẹ start_price = base_price + np.random.normal(0, 5) end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ data["Start Date"].append(s_date) data["Start Price"].append(round(start_price, 2)) data["End Date"].append(e_date) data["End Price"].append(round(end_price, 2)) base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo return pd.DataFrame(data) def current_basics(symbol: str, curday: str) -> dict: # Check if Finnhub is configured if not FINNHUB_KEYS: print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}") return {} # Thử với tất cả các Finnhub API keys for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) # Thêm timeout cho Finnhub client raw = client.company_basic_financials(symbol, "all") if not raw["series"]: continue merged = defaultdict(dict) for metric, vals in raw["series"]["quarterly"].items(): for v in vals: merged[v["period"]][metric] = v["v"] latest = max((p for p in merged if p <= curday), default=None) if latest is None: continue d = dict(merged[latest]) d["period"] = latest return d except Exception as e: print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}") time.sleep(2) # Thêm delay trước khi thử key tiếp theo continue return {} def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame: news_col = [] for _, row in df.iterrows(): start = row["Start Date"].strftime("%Y-%m-%d") end = row["End Date"].strftime("%Y-%m-%d") time.sleep(2) # Tăng delay để tránh rate limit # Check if Finnhub is configured if not FINNHUB_KEYS: print(f"⚠️ Finnhub not configured, using mock news for {symbol}") news_data = create_mock_news(symbol, start, end) news_col.append(json.dumps(news_data)) continue # Thử với tất cả các Finnhub API keys news_data = [] for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) weekly = client.company_news(symbol, _from=start, to=end) weekly_fmt = [ { "date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"), "headline": n["headline"], "summary" : n["summary"], } for n in weekly ] weekly_fmt.sort(key=lambda x: x["date"]) news_data = weekly_fmt break # Thành công, thoát khỏi loop except Exception as e: print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}") time.sleep(3) # Thêm delay trước khi thử key tiếp theo continue # Nếu không có news data, tạo mock news if not news_data: news_data = create_mock_news(symbol, start, end) news_col.append(json.dumps(news_data)) df["News"] = news_col return df def create_mock_news(symbol: str, start: str, end: str) -> list: """Tạo mock news data khi API không hoạt động""" mock_news = [ { "date": f"{start}120000", "headline": f"{symbol} Shows Strong Performance in Recent Trading", "summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment." }, { "date": f"{end}090000", "headline": f"Analysts Maintain Positive Outlook for {symbol}", "summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects." } ] return mock_news # ---------- PROMPT CONSTRUCTION ------------------------------------------- def sample_news(news: list[str], k: int = 5) -> list[str]: if len(news) <= k: return news return [news[i] for i in sorted(random.sample(range(len(news)), k))] def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str: # Thử với tất cả các Finnhub API keys để lấy company profile company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n" if FINNHUB_KEYS: for api_key in FINNHUB_KEYS: try: client = finnhub.Client(api_key=api_key) prof = client.company_profile2(symbol=symbol) company_blurb = ( f"[Company Introduction]:\n{prof['name']} operates in the " f"{prof['finnhubIndustry']} sector ({prof['country']}). " f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} " f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n" ) break # Thành công, thoát khỏi loop except Exception as e: print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}") time.sleep(2) # Thêm delay trước khi thử key tiếp theo continue else: print(f"⚠️ Finnhub not configured, using basic company info for {symbol}") # Past weeks block past_block = "" for _, row in df.iterrows(): term = "increased" if row["End Price"] > row["Start Price"] else "decreased" head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, " f"{symbol}'s stock price {term} from " f"{row['Start Price']:.2f} to {row['End Price']:.2f}.") news_items = json.loads(row["News"]) summaries = [ f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n" for n in news_items if not n["summary"].startswith("Looking for stock market analysis") ] past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5)) # Optional basic financials if use_basics: basics = current_basics(symbol, curday) if basics: basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period") basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n") else: basics_block = "\n[Basic Financials]: not available\n" else: basics_block = "\n[Basic Financials]: not requested\n" horizon = f"{curday} to {n_weeks_before(curday, -1)}" final_user_msg = ( company_blurb + past_block + basics_block + f"\nBased on all information before {curday}, analyse positive " "developments and potential concerns for {symbol}, then predict its " f"price movement for next week ({horizon})." ) return final_user_msg # ---------- LLM CALL ------------------------------------------------------- def chat_completion(prompt: str, model: str = "fin-o1-gguf", temperature: float = 0.2, stream: bool = False, symbol: str = "STOCK") -> str: # Prefer local llama.cpp model if llm is None: print(f"⚠️ Local GGUF model unavailable, using mock response for {symbol}") return create_mock_ai_response(symbol) # Build chat messages following common role schema messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt}, ] try: if stream: # llama.cpp streaming via callbacks is more involved; use non-stream here pass result = llm.create_chat_completion( messages=messages, temperature=temperature, top_p=0.9, max_tokens=1536, ) text = result.get("choices", [{}])[0].get("message", {}).get("content", "") if not text: # Fallback to completion API with manual prompt full_prompt = f"{SYSTEM_PROMPT}\n\n{prompt}\n" comp = llm( full_prompt, max_tokens=1536, temperature=temperature, top_p=0.9, ) text = comp.get("choices", [{}])[0].get("text", "") return text.strip() if text else create_mock_ai_response(symbol) except Exception as e: print(f"⚠️ Local generation failed: {e}") return create_mock_ai_response(symbol) def create_mock_ai_response(symbol: str) -> str: """Tạo mock AI response khi Google API không hoạt động""" return f""" [Positive Developments] • Strong market position and brand recognition for {symbol} • Recent quarterly earnings showing growth potential • Positive analyst sentiment and institutional investor interest • Technological innovation and market expansion opportunities [Potential Concerns] • Market volatility and economic uncertainty • Competitive pressures in the industry • Regulatory changes that may impact operations • Global economic factors affecting stock performance [Prediction & Analysis] Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns. Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals. """ # ---------- MAIN PREDICTION FUNCTION ----------------------------------------- def predict(symbol: str = "AAPL", curday: str = today(), n_weeks: int = 3, use_basics: bool = False, stream: bool = False) -> tuple[str, str]: try: steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1] df = get_stock_data(symbol, steps) df = attach_news(symbol, df) prompt_info = make_prompt(symbol, df, curday, use_basics) answer = chat_completion(prompt_info, stream=stream, symbol=symbol) return prompt_info, answer except Exception as e: error_msg = f"Error in prediction: {str(e)}" print(f"Prediction error: {e}") # Log the error for debugging return error_msg, error_msg # ---------- HUGGINGFACE SPACES INTERFACE ----------------------------------------- def hf_predict(symbol, n_weeks, use_basics): # 1. get curday curday = date.today().strftime("%Y-%m-%d") # 2. call predict prompt, answer = predict( symbol=symbol.upper(), curday=curday, n_weeks=int(n_weeks), use_basics=bool(use_basics), stream=False ) return prompt, answer # ---------- GRADIO INTERFACE ----------------------------------------- def create_interface(): with gr.Blocks( title="FinRobot Forecaster", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1200px !important; margin: auto !important; } #model_prompt_textbox textarea { overflow-y: auto !important; max-height: none !important; min-height: 400px !important; resize: vertical !important; white-space: pre-wrap !important; word-wrap: break-word !important; height: auto !important; } #model_prompt_textbox { height: auto !important; } #analysis_results_textbox textarea { overflow-y: auto !important; max-height: none !important; min-height: 400px !important; resize: vertical !important; white-space: pre-wrap !important; word-wrap: break-word !important; height: auto !important; } #analysis_results_textbox { height: auto !important; } .textarea textarea { overflow-y: auto !important; max-height: 500px !important; resize: vertical !important; } .textarea { height: auto !important; min-height: 300px !important; } .gradio-textbox { height: auto !important; max-height: none !important; } .gradio-textbox textarea { height: auto !important; max-height: none !important; overflow-y: auto !important; } """ ) as demo: gr.Markdown(""" # 🤖 FinRobot Forecaster **AI-powered stock market analysis and prediction using advanced language models** This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions. ⚠️ **Note**: Free API keys have daily rate limits. If you encounter errors, the app will use mock data for demonstration purposes. """) with gr.Row(): with gr.Column(scale=1): symbol = gr.Textbox( label="Stock Symbol", value="AAPL", placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)", info="Enter the ticker symbol of the stock you want to analyze" ) n_weeks = gr.Slider( 1, 6, value=3, step=1, label="Historical Weeks to Analyze", info="Number of weeks of historical data to include in analysis" ) use_basics = gr.Checkbox( label="Include Basic Financials", value=True, info="Include basic financial metrics in the analysis" ) btn = gr.Button( "🚀 Run Analysis", variant="primary" ) with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("📊 Analysis Results"): gr.Markdown("**AI Analysis & Prediction**") output_answer = gr.Textbox( label="", lines=40, show_copy_button=True, interactive=False, placeholder="AI analysis and predictions will appear here...", container=True, scale=1, elem_id="analysis_results_textbox" ) with gr.Tab("🔍 Model Prompt"): gr.Markdown("**Generated Prompt**") output_prompt = gr.Textbox( label="", lines=40, show_copy_button=True, interactive=False, placeholder="Generated prompt will appear here...", container=True, scale=1, elem_id="model_prompt_textbox" ) with gr.Tab("🛠️ Debug"): gr.Markdown("**Runtime Diagnostics**") debug_text = gr.Textbox( label="", lines=30, show_copy_button=True, interactive=False, placeholder="System and model diagnostics will appear here...", container=True, scale=1, ) refresh_btn = gr.Button("🔄 Refresh Debug Info") # Examples gr.Examples( examples=[ ["AAPL", 3, False], ["MSFT", 4, True], ["GOOGL", 2, False], ["TSLA", 5, True], ["NVDA", 3, True] ], inputs=[symbol, n_weeks, use_basics], label="💡 Try these examples" ) # Event handlers btn.click( fn=hf_predict, inputs=[symbol, n_weeks, use_basics], outputs=[output_prompt, output_answer], show_progress=True ) # Populate/refresh debug info def ui_get_debug_info(): try: return build_debug_info() except Exception as e: return f"Failed to build debug info: {e}" refresh_btn.click( fn=ui_get_debug_info, inputs=[], outputs=[debug_text], ) # Also refresh debug info after analysis run btn.click( fn=ui_get_debug_info, inputs=[], outputs=[debug_text], show_progress=False, ) # Footer gr.Markdown(""" --- **Disclaimer**: This application is for educational and research purposes only. The predictions and analysis provided should not be considered as financial advice. Always consult with qualified financial professionals before making investment decisions. """) return demo # ---------- MAIN EXECUTION ----------------------------------------- if __name__ == "__main__": demo = create_interface() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=False, quiet=True )