Spaces:
Running
Running
File size: 12,387 Bytes
a66e866 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 a66e866 07ef252 8ab789a 07ef252 0eb7e14 07ef252 a66e866 07ef252 a66e866 07ef252 a66e866 07ef252 a66e866 07ef252 0eb7e14 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 a66e866 07ef252 a66e866 07ef252 a66e866 07ef252 a66e866 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 8ab789a 07ef252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import { WhisperForConditionalGeneration, WhisperProcessor } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]';
// Get DOM elements
const status = document.getElementById('status');
const startBtn = document.getElementById('startBtn');
const stopBtn = document.getElementById('stopBtn');
const clearBtn = document.getElementById('clearBtn');
const transcriptionContainer = document.getElementById('transcriptionContainer');
const chunkLengthSelect = document.getElementById('chunkLength');
const useWebGPUCheckbox = document.getElementById('useWebGPU');
const chunkCountDisplay = document.getElementById('chunkCount');
const recordingTimeDisplay = document.getElementById('recordingTime');
const visualizerBars = document.querySelectorAll('.bar');
// State
let model = null;
let processor = null;
let mediaStream = null;
let audioContext = null;
let mediaRecorder = null;
let recordedChunks = [];
let isRecording = false;
let chunkCount = 0;
let recordingStartTime = null;
let recordingInterval = null;
let analyser = null;
let animationId = null;
// Initialize the ATOM model
async function initModel() {
try {
status.textContent = 'Loading ATOM model with custom tokenizer... This may take a minute.';
status.className = 'loading';
const device = useWebGPUCheckbox.checked ? 'webgpu' : 'wasm';
const dtype = useWebGPUCheckbox.checked ? 'fp32' : 'fp32';
// Load processor (includes the custom Armenian tokenizer)
status.textContent = 'Loading custom Armenian processor/tokenizer...';
processor = await WhisperProcessor.from_pretrained('Chillarmo/ATOM', {
progress_callback: (progress) => {
if (progress.status === 'downloading') {
const percent = Math.round((progress.loaded / progress.total) * 100);
status.textContent = `Downloading ${progress.file}: ${percent}%`;
}
}
});
console.log('β ATOM Processor loaded (includes custom tokenizer)');
// Load model
status.textContent = 'Loading ATOM model...';
model = await WhisperForConditionalGeneration.from_pretrained('Chillarmo/ATOM', {
device: device,
dtype: dtype,
progress_callback: (progress) => {
if (progress.status === 'downloading') {
const percent = Math.round((progress.loaded / progress.total) * 100);
status.textContent = `Downloading model ${progress.file}: ${percent}%`;
} else if (progress.status === 'loading') {
status.textContent = `Loading ${progress.file}...`;
}
}
});
console.log('β ATOM Model loaded');
console.log('Model config:', model.config);
console.log('Processor:', processor);
status.textContent = 'ATOM ready! Model + custom tokenizer loaded successfully.';
status.className = 'ready';
startBtn.disabled = false;
} catch (error) {
console.error('Model loading error:', error);
status.textContent = `Error loading model: ${error.message}`;
status.className = 'error';
console.error('Full error details:', error);
}
}
// Format time as MM:SS
function formatTime(seconds) {
const mins = Math.floor(seconds / 60);
const secs = Math.floor(seconds % 60);
return `${mins.toString().padStart(2, '0')}:${secs.toString().padStart(2, '0')}`;
}
// Update recording time
function updateRecordingTime() {
if (recordingStartTime) {
const elapsed = (Date.now() - recordingStartTime) / 1000;
recordingTimeDisplay.textContent = formatTime(elapsed);
}
}
// Visualize audio
function visualizeAudio() {
if (!analyser || !isRecording) return;
const dataArray = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteFrequencyData(dataArray);
// Sample the data for visualization
const barCount = visualizerBars.length;
const step = Math.floor(dataArray.length / barCount);
visualizerBars.forEach((bar, index) => {
const value = dataArray[index * step];
const height = (value / 255) * 70 + 4; // 4px minimum, 74px maximum
bar.style.height = `${height}px`;
});
animationId = requestAnimationFrame(visualizeAudio);
}
// Start recording
async function startRecording() {
try {
// Request microphone access
mediaStream = await navigator.mediaDevices.getUserMedia({
audio: {
channelCount: 1,
sampleRate: 16000,
}
});
// Set up audio context for visualization
audioContext = new AudioContext({ sampleRate: 16000 });
const source = audioContext.createMediaStreamSource(mediaStream);
analyser = audioContext.createAnalyser();
analyser.fftSize = 256;
source.connect(analyser);
// Set up MediaRecorder
mediaRecorder = new MediaRecorder(mediaStream);
recordedChunks = [];
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0) {
recordedChunks.push(event.data);
}
};
mediaRecorder.onstop = async () => {
if (recordedChunks.length > 0) {
await processAudioChunk(recordedChunks);
recordedChunks = [];
}
};
// Start recording
const chunkDuration = parseInt(chunkLengthSelect.value) * 1000;
mediaRecorder.start();
// Schedule automatic chunk processing
const chunkInterval = setInterval(() => {
if (!isRecording) {
clearInterval(chunkInterval);
return;
}
mediaRecorder.stop();
mediaRecorder.start();
}, chunkDuration);
isRecording = true;
recordingStartTime = Date.now();
recordingInterval = setInterval(updateRecordingTime, 100);
status.textContent = 'Recording... Speak in Armenian';
status.className = 'recording';
startBtn.disabled = true;
stopBtn.disabled = false;
// Start visualization
visualizeAudio();
} catch (error) {
console.error('Error starting recording:', error);
status.textContent = `Error: ${error.message}`;
status.className = 'error';
}
}
// Stop recording
function stopRecording() {
isRecording = false;
if (mediaRecorder && mediaRecorder.state !== 'inactive') {
mediaRecorder.stop();
}
if (mediaStream) {
mediaStream.getTracks().forEach(track => track.stop());
}
if (audioContext) {
audioContext.close();
}
if (recordingInterval) {
clearInterval(recordingInterval);
}
if (animationId) {
cancelAnimationFrame(animationId);
}
// Reset visualizer
visualizerBars.forEach(bar => {
bar.style.height = '4px';
});
status.textContent = 'Recording stopped. Ready for next recording.';
status.className = 'ready';
startBtn.disabled = false;
stopBtn.disabled = true;
}
// Process audio chunk
async function processAudioChunk(chunks) {
try {
status.textContent = 'Processing audio...';
status.className = 'processing';
// Create audio blob
const audioBlob = new Blob(chunks, { type: 'audio/webm' });
// Convert to array buffer
const arrayBuffer = await audioBlob.arrayBuffer();
// Decode audio
const tempAudioContext = new (window.AudioContext || window.webkitAudioContext)();
const audioBuffer = await tempAudioContext.decodeAudioData(arrayBuffer);
// Get audio data as Float32Array
const audioData = audioBuffer.getChannelData(0);
console.log('Processing audio chunk:', audioData.length, 'samples at', audioBuffer.sampleRate, 'Hz');
// Process audio with the processor (includes custom tokenizer)
const inputs = await processor(audioData, {
sampling_rate: audioBuffer.sampleRate,
});
console.log('Processor output:', inputs);
// Generate with the model
const outputs = await model.generate({
...inputs,
});
console.log('Model outputs:', outputs);
// Decode the output tokens using the custom tokenizer
const decoded = processor.batch_decode(outputs, {
skip_special_tokens: true,
});
console.log('Decoded text:', decoded);
// Add to transcription
const text = decoded[0].trim();
if (text) {
addTranscription(text);
chunkCount++;
chunkCountDisplay.textContent = chunkCount;
}
if (isRecording) {
status.textContent = 'Recording... Speak in Armenian';
status.className = 'recording';
} else {
status.textContent = 'Ready for next recording.';
status.className = 'ready';
}
tempAudioContext.close();
} catch (error) {
console.error('Error processing audio:', error);
status.textContent = `Processing error: ${error.message}`;
status.className = 'error';
console.error('Full processing error:', error);
// Restore recording status if still recording
setTimeout(() => {
if (isRecording) {
status.textContent = 'Recording... Speak in Armenian';
status.className = 'recording';
}
}, 2000);
}
}
// Add transcription to UI
function addTranscription(text) {
// Remove empty state if present
const emptyState = transcriptionContainer.querySelector('.empty-state');
if (emptyState) {
emptyState.remove();
}
// Create transcription item
const item = document.createElement('div');
item.className = 'transcription-item';
const timestamp = document.createElement('div');
timestamp.className = 'timestamp';
timestamp.textContent = new Date().toLocaleTimeString();
const textDiv = document.createElement('div');
textDiv.className = 'text';
textDiv.textContent = text;
item.appendChild(timestamp);
item.appendChild(textDiv);
transcriptionContainer.appendChild(item);
// Auto-scroll to bottom
transcriptionContainer.scrollTop = transcriptionContainer.scrollHeight;
}
// Clear transcriptions
function clearTranscriptions() {
transcriptionContainer.innerHTML = `
<div class="empty-state">
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke="currentColor">
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M19 11a7 7 0 01-7 7m0 0a7 7 0 01-7-7m7 7v4m0 0H8m4 0h4m-4-8a3 3 0 01-3-3V5a3 3 0 116 0v6a3 3 0 01-3 3z" />
</svg>
<p>Click "Start Recording" to begin transcribing Armenian speech</p>
</div>
`;
chunkCount = 0;
chunkCountDisplay.textContent = '0';
recordingTimeDisplay.textContent = '00:00';
}
// Event listeners
startBtn.addEventListener('click', startRecording);
stopBtn.addEventListener('click', stopRecording);
clearBtn.addEventListener('click', clearTranscriptions);
// Check WebGPU support
if (useWebGPUCheckbox.checked && !navigator.gpu) {
status.textContent = 'WebGPU not supported, falling back to WASM';
status.className = 'error';
useWebGPUCheckbox.checked = false;
setTimeout(() => initModel(), 2000);
} else {
// Initialize model on load
initModel();
}
// Re-initialize if WebGPU setting changes
useWebGPUCheckbox.addEventListener('change', () => {
if (isRecording) {
alert('Please stop recording before changing acceleration settings');
useWebGPUCheckbox.checked = !useWebGPUCheckbox.checked;
return;
}
status.textContent = 'Reinitializing model...';
status.className = 'loading';
startBtn.disabled = true;
initModel();
}); |