Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,208 +1,125 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return pd.DataFrame(columns=['Model', 'Average Performance'])
|
| 45 |
-
return data.groupby('Model')['Value'].mean().reset_index().rename(columns={'Value': 'Average Performance'})
|
| 46 |
-
|
| 47 |
-
def create_bar_chart(df, category):
|
| 48 |
-
"""Create a horizontal bar chart for the specified category."""
|
| 49 |
-
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
|
| 50 |
-
fig = go.Figure(go.Bar(
|
| 51 |
-
x=sorted_df[category],
|
| 52 |
-
y=sorted_df['Model'],
|
| 53 |
-
orientation='h',
|
| 54 |
-
marker=dict(color=sorted_df[category], colorscale='Viridis'),
|
| 55 |
-
hoverinfo='x+y',
|
| 56 |
-
text=sorted_df[category],
|
| 57 |
-
textposition='auto'
|
| 58 |
-
))
|
| 59 |
-
fig.update_layout(
|
| 60 |
-
margin=dict(l=20, r=20, t=20, b=20),
|
| 61 |
-
title=f"Leaderboard for {category} Scores"
|
| 62 |
-
)
|
| 63 |
-
return fig
|
| 64 |
-
|
| 65 |
-
def generate_visualizations(data, averages):
|
| 66 |
-
sns.set(style='whitegrid')
|
| 67 |
-
|
| 68 |
-
if averages.empty:
|
| 69 |
-
print("No averages to visualize.")
|
| 70 |
-
return None, None, None, None, None, None
|
| 71 |
-
|
| 72 |
-
averages = averages.sort_values(by='Average Performance')
|
| 73 |
-
|
| 74 |
-
# Matplotlib average performance plot
|
| 75 |
plt.figure(figsize=(12, 8))
|
| 76 |
-
|
| 77 |
-
plt.title(
|
| 78 |
-
plt.xlabel(
|
| 79 |
-
plt.ylabel(
|
|
|
|
|
|
|
| 80 |
plt.tight_layout()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
plt.close()
|
| 88 |
-
|
| 89 |
-
# Line plot for task performance by model
|
| 90 |
-
sorted_models = averages['Model'].tolist()
|
| 91 |
-
data['Model'] = pd.Categorical(data['Model'], categories=sorted_models, ordered=True)
|
| 92 |
-
data = data.sort_values(by=['Model', 'Task'])
|
| 93 |
-
|
| 94 |
-
if data.empty:
|
| 95 |
-
print("No data available for line plot.")
|
| 96 |
-
return image_avg, None, None, None, None, None
|
| 97 |
-
|
| 98 |
plt.figure(figsize=(14, 10))
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
plt.
|
|
|
|
|
|
|
| 104 |
plt.xticks(rotation=45)
|
|
|
|
|
|
|
| 105 |
plt.tight_layout()
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
plt.
|
| 117 |
-
|
| 118 |
-
plt.
|
| 119 |
-
plt.
|
| 120 |
-
plt.
|
| 121 |
-
plt.tight_layout()
|
| 122 |
-
|
| 123 |
-
# Save the heatmap to a buffer
|
| 124 |
-
buffer_heatmap = StringIO()
|
| 125 |
-
plt.savefig(buffer_heatmap, format='png')
|
| 126 |
-
buffer_heatmap.seek(0)
|
| 127 |
-
image_heatmap = base64.b64encode(buffer_heatmap.read()).decode('utf-8')
|
| 128 |
-
plt.close()
|
| 129 |
-
|
| 130 |
-
# Boxplot of performance distribution per model
|
| 131 |
-
plt.figure(figsize=(12, 8))
|
| 132 |
-
sns.boxplot(data=data, x='Model', y='Value', palette='Set2')
|
| 133 |
-
plt.title('Performance Distribution per Model', fontsize=16)
|
| 134 |
-
plt.xlabel('Model', fontsize=12)
|
| 135 |
-
plt.ylabel('Performance', fontsize=12)
|
| 136 |
-
plt.xticks(rotation=45)
|
| 137 |
plt.tight_layout()
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
input_text = gr.Textbox(lines=10, label="Paste your data here")
|
| 180 |
-
|
| 181 |
-
with gr.Row():
|
| 182 |
-
output_text = gr.Textbox(label="Average Performance per Model")
|
| 183 |
-
|
| 184 |
-
with gr.Row():
|
| 185 |
-
with gr.Column():
|
| 186 |
-
image_avg = gr.Image(label="Matplotlib Average Performance Chart")
|
| 187 |
-
image_line = gr.Image(label="Matplotlib Task Performance Line Chart")
|
| 188 |
-
with gr.Column():
|
| 189 |
-
image_heatmap = gr.Image(label="Matplotlib Task Performance Heatmap")
|
| 190 |
-
image_boxplot = gr.Image(label="Matplotlib Performance Distribution Boxplot")
|
| 191 |
-
with gr.Row():
|
| 192 |
-
plotly_avg = gr.HTML(label="Plotly Average Performance Chart")
|
| 193 |
-
|
| 194 |
-
task_tabs = gr.TabbedInterface([])
|
| 195 |
-
|
| 196 |
-
def update_tabs(file_content):
|
| 197 |
-
_, _, _, _, _, _, plotly_tasks = process_and_visualize(file_content)
|
| 198 |
-
return [gr.HTML(value=html, label=task) for task, html in plotly_tasks.items()]
|
| 199 |
-
|
| 200 |
-
input_text.change(
|
| 201 |
-
fn=process_and_visualize,
|
| 202 |
-
inputs=input_text,
|
| 203 |
-
outputs=[output_text, image_avg, image_line, image_heatmap, image_boxplot, plotly_avg],
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
input_text.change(fn=update_tabs, inputs=input_text, outputs=[task_tabs])
|
| 207 |
-
|
| 208 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# Input data
|
| 6 |
+
data_full = [
|
| 7 |
+
["CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290],
|
| 8 |
+
["djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817],
|
| 9 |
+
["CultriX/Qwen2.5-14B-FinalMerge", 0.7248, 0.8277, 0.7113, 0.7052, 0.5700, 0.7001],
|
| 10 |
+
["CultriX/Qwen2.5-14B-MultiCultyv2", 0.7295, 0.8359, 0.7363, 0.5767, 0.4400, 0.7316],
|
| 11 |
+
["CultriX/Qwen2.5-14B-Brocav7", 0.7445, 0.8353, 0.7508, 0.6292, 0.4600, 0.7629],
|
| 12 |
+
["CultriX/Qwen2.5-14B-Broca", 0.7456, 0.8352, 0.7480, 0.6034, 0.4400, 0.7716],
|
| 13 |
+
["CultriX/Qwen2.5-14B-Brocav3", 0.7395, 0.8388, 0.7393, 0.6405, 0.4700, 0.7659],
|
| 14 |
+
["CultriX/Qwen2.5-14B-Brocav4", 0.7432, 0.8377, 0.7444, 0.6277, 0.4800, 0.7580],
|
| 15 |
+
["CultriX/Qwen2.5-14B-Brocav2", 0.7492, 0.8302, 0.7508, 0.6377, 0.5100, 0.7478],
|
| 16 |
+
["CultriX/Qwen2.5-14B-Brocav5", 0.7445, 0.8313, 0.7547, 0.6376, 0.5000, 0.7304],
|
| 17 |
+
["CultriX/Qwen2.5-14B-Brocav6", 0.7179, 0.8354, 0.7531, 0.6378, 0.4900, 0.7524],
|
| 18 |
+
["CultriX/Qwenfinity-2.5-14B", 0.7347, 0.8254, 0.7279, 0.7267, 0.5600, 0.6970],
|
| 19 |
+
["CultriX/Qwen2.5-14B-Emergedv2", 0.7137, 0.8335, 0.7363, 0.5836, 0.4400, 0.7344],
|
| 20 |
+
["CultriX/Qwen2.5-14B-Unity", 0.7063, 0.8343, 0.7423, 0.6820, 0.5700, 0.7498],
|
| 21 |
+
["CultriX/Qwen2.5-14B-MultiCultyv3", 0.7132, 0.8216, 0.7395, 0.6792, 0.5500, 0.7120],
|
| 22 |
+
["CultriX/Qwen2.5-14B-Emergedv3", 0.7436, 0.8312, 0.7519, 0.6585, 0.5500, 0.7068],
|
| 23 |
+
["CultriX/SeQwence-14Bv1", 0.7278, 0.8410, 0.7541, 0.6816, 0.5200, 0.7539],
|
| 24 |
+
["CultriX/Qwen2.5-14B-Wernickev2", 0.7391, 0.8168, 0.7273, 0.6220, 0.4500, 0.7572],
|
| 25 |
+
["CultriX/Qwen2.5-14B-Wernickev3", 0.7357, 0.8148, 0.7245, 0.7023, 0.5500, 0.7869],
|
| 26 |
+
["CultriX/Qwen2.5-14B-Wernickev4", 0.7355, 0.8290, 0.7497, 0.6306, 0.4800, 0.7635],
|
| 27 |
+
["CultriX/SeQwential-14B-v1", 0.7355, 0.8205, 0.7549, 0.6367, 0.4800, 0.7626],
|
| 28 |
+
["CultriX/Qwen2.5-14B-Wernickev5", 0.7224, 0.8272, 0.7541, 0.6790, 0.5100, 0.7578],
|
| 29 |
+
["CultriX/Qwen2.5-14B-Wernickev6", 0.6994, 0.7549, 0.5816, 0.6991, 0.5800, 0.7267],
|
| 30 |
+
["CultriX/Qwen2.5-14B-Wernickev7", 0.7147, 0.7599, 0.6097, 0.7056, 0.5700, 0.7164],
|
| 31 |
+
["CultriX/Qwen2.5-14B-FinalMerge-tmp2", 0.7255, 0.8192, 0.7535, 0.6671, 0.5000, 0.7612],
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
columns = ["Model Configuration", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
| 35 |
+
|
| 36 |
+
# Convert to DataFrame
|
| 37 |
+
df_full = pd.DataFrame(data_full, columns=columns)
|
| 38 |
+
|
| 39 |
+
def plot_average_scores():
|
| 40 |
+
df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1)
|
| 41 |
+
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
| 42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
plt.figure(figsize=(12, 8))
|
| 44 |
+
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
| 45 |
+
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
| 46 |
+
plt.xlabel("Average Score", fontsize=14)
|
| 47 |
+
plt.ylabel("Model Configuration", fontsize=14)
|
| 48 |
+
plt.gca().invert_yaxis()
|
| 49 |
+
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 50 |
plt.tight_layout()
|
| 51 |
+
plt.savefig("average_performance.png")
|
| 52 |
+
return "average_performance.png"
|
| 53 |
+
|
| 54 |
+
def plot_task_performance():
|
| 55 |
+
df_full_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score")
|
| 56 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
plt.figure(figsize=(14, 10))
|
| 58 |
+
for model in df_full["Model Configuration"]:
|
| 59 |
+
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
| 60 |
+
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
| 61 |
+
|
| 62 |
+
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
| 63 |
+
plt.xlabel("Task", fontsize=14)
|
| 64 |
+
plt.ylabel("Score", fontsize=14)
|
| 65 |
plt.xticks(rotation=45)
|
| 66 |
+
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 67 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 68 |
plt.tight_layout()
|
| 69 |
+
plt.savefig("task_performance.png")
|
| 70 |
+
return "task_performance.png"
|
| 71 |
+
|
| 72 |
+
def plot_task_specific_top_models():
|
| 73 |
+
top_models = df_full.iloc[:, :-1].set_index("Model Configuration").idxmax()
|
| 74 |
+
top_scores = df_full.iloc[:, :-1].set_index("Model Configuration").max()
|
| 75 |
+
|
| 76 |
+
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
| 77 |
+
|
| 78 |
+
plt.figure(figsize=(12, 6))
|
| 79 |
+
plt.bar(results["Task"], results["Score"])
|
| 80 |
+
plt.title("Task-Specific Top Models", fontsize=16)
|
| 81 |
+
plt.xlabel("Task", fontsize=14)
|
| 82 |
+
plt.ylabel("Score", fontsize=14)
|
| 83 |
+
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
plt.tight_layout()
|
| 85 |
+
plt.savefig("task_specific_top_models.png")
|
| 86 |
+
return "task_specific_top_models.png"
|
| 87 |
+
|
| 88 |
+
def top_3_models_per_task():
|
| 89 |
+
top_3_data = {
|
| 90 |
+
task: df_full.nlargest(3, task)[["Model Configuration", task]].values.tolist()
|
| 91 |
+
for task in df_full.columns[1:-1]
|
| 92 |
+
}
|
| 93 |
+
top_3_results = pd.DataFrame({
|
| 94 |
+
task: {
|
| 95 |
+
"Top 3 Models": [entry[0] for entry in top_3_data[task]],
|
| 96 |
+
"Scores": [entry[1] for entry in top_3_data[task]],
|
| 97 |
+
}
|
| 98 |
+
for task in top_3_data
|
| 99 |
+
}).T.rename_axis("Task").reset_index()
|
| 100 |
+
return top_3_results
|
| 101 |
+
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
gr.Markdown("# Model Performance Analysis")
|
| 104 |
+
|
| 105 |
+
with gr.Row():
|
| 106 |
+
btn1 = gr.Button("Show Average Performance")
|
| 107 |
+
img1 = gr.Image(type="filepath")
|
| 108 |
+
btn1.click(plot_average_scores, outputs=img1)
|
| 109 |
+
|
| 110 |
+
with gr.Row():
|
| 111 |
+
btn2 = gr.Button("Show Task Performance")
|
| 112 |
+
img2 = gr.Image(type="filepath")
|
| 113 |
+
btn2.click(plot_task_performance, outputs=img2)
|
| 114 |
+
|
| 115 |
+
with gr.Row():
|
| 116 |
+
btn3 = gr.Button("Task-Specific Top Models")
|
| 117 |
+
img3 = gr.Image(type="filepath")
|
| 118 |
+
btn3.click(plot_task_specific_top_models, outputs=img3)
|
| 119 |
+
|
| 120 |
+
with gr.Row():
|
| 121 |
+
btn4 = gr.Button("Top 3 Models Per Task")
|
| 122 |
+
output4 = gr.Dataframe()
|
| 123 |
+
btn4.click(top_3_models_per_task, outputs=output4)
|
| 124 |
+
|
| 125 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|