Spaces:
Running
on
Zero
Running
on
Zero
add spend time calc
Browse files
app.py
CHANGED
|
@@ -148,11 +148,24 @@ def process_video(
|
|
| 148 |
|
| 149 |
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
|
|
@@ -162,7 +175,11 @@ def process_video(
|
|
| 162 |
indices = np.round(indices).astype(np.int32)
|
| 163 |
|
| 164 |
|
|
|
|
| 165 |
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
|
|
|
|
|
|
|
|
|
|
| 166 |
glb_files = []
|
| 167 |
|
| 168 |
for idx, pcd in enumerate(pcds):
|
|
@@ -418,9 +435,13 @@ with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
|
| 418 |
return None, None, None, None, None, None, "Please upload a video file"
|
| 419 |
|
| 420 |
try:
|
|
|
|
|
|
|
| 421 |
output_path, glb_files = process_video(
|
| 422 |
video_file, model_size, num_inference_steps, overlap
|
| 423 |
)
|
|
|
|
|
|
|
| 424 |
|
| 425 |
|
| 426 |
if output_path is None:
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
|
| 151 |
+
import time
|
| 152 |
+
start_time = time.time()
|
| 153 |
+
|
| 154 |
+
prediction_result = DKT_PIPELINE(
|
| 155 |
+
video_file,
|
| 156 |
+
prompt=PROMPT,
|
| 157 |
+
negative_prompt=NEGATIVE_PROMPT,
|
| 158 |
+
height=height,
|
| 159 |
+
width=width,
|
| 160 |
+
num_inference_steps=num_inference_steps,
|
| 161 |
+
overlap=overlap,
|
| 162 |
+
return_rgb=True
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
end_time = time.time()
|
| 166 |
+
spend_time = end_time - start_time
|
| 167 |
+
logger.info(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
|
| 168 |
+
|
| 169 |
|
| 170 |
|
| 171 |
|
|
|
|
| 175 |
indices = np.round(indices).astype(np.int32)
|
| 176 |
|
| 177 |
|
| 178 |
+
pc_start_time = time.time()
|
| 179 |
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
|
| 180 |
+
pc_end_time = time.time()
|
| 181 |
+
pc_spend_time = pc_end_time - pc_start_time
|
| 182 |
+
logger.info(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
|
| 183 |
glb_files = []
|
| 184 |
|
| 185 |
for idx, pcd in enumerate(pcds):
|
|
|
|
| 435 |
return None, None, None, None, None, None, "Please upload a video file"
|
| 436 |
|
| 437 |
try:
|
| 438 |
+
import time
|
| 439 |
+
start_time = time.time()
|
| 440 |
output_path, glb_files = process_video(
|
| 441 |
video_file, model_size, num_inference_steps, overlap
|
| 442 |
)
|
| 443 |
+
spend_time = time.time() - start_time
|
| 444 |
+
logger.info(f"Total spend time in on_submit: {spend_time:.2f} seconds")
|
| 445 |
|
| 446 |
|
| 447 |
if output_path is None:
|