File size: 16,758 Bytes
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import re
import tempfile
from collections import Counter
from pathlib import Path
from typing import Literal

import gradio as gr
import torch

from NatureLM.config import Config
from NatureLM.models.NatureLM import NatureLM
from NatureLM.utils import generate_sample_batches, prepare_sample_waveforms

CONFIG: Config = None
MODEL: NatureLM = None
MODEL_LOADED = False
MODEL_LOADING = False
MODEL_LOAD_FAILED = False


def check_model_availability():
    """Check if the model is available for download"""
    try:
        from huggingface_hub import model_info
        info = model_info("EarthSpeciesProject/NatureLM-audio")
        return True, "Model is available"
    except Exception as e:
        return False, f"Model not available: {str(e)}"


def reset_model_state():
    """Reset the model loading state to allow retrying after a failure"""
    global MODEL, MODEL_LOADED, MODEL_LOADING, MODEL_LOAD_FAILED
    MODEL = None
    MODEL_LOADED = False
    MODEL_LOADING = False
    MODEL_LOAD_FAILED = False
    return get_model_status()


def get_model_status():
    """Get the current model loading status"""
    if MODEL_LOADED:
        return "βœ… Model loaded and ready"
    elif MODEL_LOADING:
        return "πŸ”„ Loading model... Please wait"
    elif MODEL_LOAD_FAILED:
        return "❌ Model failed to load. Please check the configuration."
    else:
        return "⏳ Ready to load model on first use"


def load_model_if_needed():
    """Lazy load the model when first needed"""
    global MODEL, MODEL_LOADED, MODEL_LOADING, MODEL_LOAD_FAILED
    
    if MODEL_LOADED:
        return MODEL
    
    if MODEL_LOADING:
        # Model is currently loading, return a message to try again
        return None
    
    if MODEL_LOAD_FAILED:
        # Model has already failed to load, don't try again
        return None
    
    if MODEL is None:
        try:
            MODEL_LOADING = True
            print("Loading model...")
            
            # Check if model is available first
            available, message = check_model_availability()
            if not available:
                raise Exception(f"Model not available: {message}")
            
            model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
            model.to("cpu")  # Use CPU for HuggingFace Spaces
            model.eval()
            MODEL = model
            MODEL_LOADED = True
            MODEL_LOADING = False
            print("Model loaded successfully!")
            return MODEL
        except Exception as e:
            print(f"Error loading model: {e}")
            MODEL_LOADING = False
            MODEL_LOAD_FAILED = True
            return None
    
    return MODEL


def prompt_lm(audios: list[str], messages: list[dict[str, str]]):
    # Always try to load the model if needed
    model = load_model_if_needed()
    
    if model is None:
        if MODEL_LOADING:
            return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
        elif MODEL_LOAD_FAILED:
            return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again using the retry button."
        else:
            return "Demo mode: Model not loaded. Please check the model configuration."
    
    cuda_enabled = torch.cuda.is_available()
    samples = prepare_sample_waveforms(audios, cuda_enabled)
    prompt_text = model.llama_tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    ).removeprefix(model.llama_tokenizer.bos_token)

    prompt_text = re.sub(
        r"<\|start_header_id\|>system<\|end_header_id\|>\n\nCutting Knowledge Date: [^\n]+\nToday Date: [^\n]+\n\n<\|eot_id\|>",
        "",
        prompt_text,
    )  # exclude the system header from the prompt
    prompt_text = re.sub("\\n", r"\\n", prompt_text)  # FIXME this is a hack to fix the issue #34

    print(f"{prompt_text=}")
    with torch.cuda.amp.autocast(dtype=torch.float16):
        llm_answer = model.generate(samples, CONFIG.generate, prompts=[prompt_text])
    return llm_answer[0]


def _multimodal_textbox_factory():
    return gr.MultimodalTextbox(
        value=None,
        interactive=True,
        file_count="multiple",
        placeholder="Enter message or upload file...",
        show_label=False,
        submit_btn="Add input",
        file_types=["audio"],
    )


def user_message(content):
    return {"role": "user", "content": content}


def add_message(history, message):
    for x in message["files"]:
        history.append(user_message({"path": x}))
    if message["text"]:
        history.append(user_message(message["text"]))
    return history, _multimodal_textbox_factory()


def combine_model_inputs(msgs: list[dict[str, str]]) -> dict[str, list[str]]:
    messages = []
    files = []
    for msg in msgs:
        print(msg, messages, files)
        match msg:
            case {"content": (path,)}:
                messages.append({"role": msg["role"], "content": "<Audio><AudioHere></Audio> "})
                files.append(path)
            case _:
                messages.append(msg)
    joined_messages = []
    # join consecutive messages from the same role
    for msg in messages:
        if joined_messages and joined_messages[-1]["role"] == msg["role"]:
            joined_messages[-1]["content"] += msg["content"]
        else:
            joined_messages.append(msg)

    return {"messages": joined_messages, "files": files}


def bot_response(history: list):
    print(type(history))
    combined_inputs = combine_model_inputs(history)
    response = prompt_lm(combined_inputs["files"], combined_inputs["messages"])
    history.append({"role": "assistant", "content": response})

    return history


def _chat_tab(examples):
    # Add status indicator
    status_text = gr.Textbox(
        value=get_model_status(),
        label="Model Status",
        interactive=False,
        visible=True
    )
    
    # Add retry button that only shows when model failed to load
    retry_button = gr.Button(
        "πŸ”„ Retry Loading Model", 
        visible=False,
        variant="secondary"
    )
    
    chatbot = gr.Chatbot(
        label="Model inputs",
        elem_id="chatbot",
        bubble_full_width=False,
        type="messages",
        render_markdown=False,
        # editable="user",  # disable because of https://github.com/gradio-app/gradio/issues/10320
        resizeable=True,
    )

    chat_input = _multimodal_textbox_factory()
    send_all = gr.Button("Send all", elem_id="send-all")
    clear_button = gr.ClearButton(components=[chatbot, chat_input], visible=False)

    chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
    bot_msg = send_all.click(
        bot_response,
        [chatbot],
        [chatbot],
        api_name="bot_response",
    )

    # Update status after bot response
    bot_msg.then(lambda: get_model_status(), None, [status_text])
    bot_msg.then(lambda: gr.ClearButton(visible=True), None, [clear_button])
    clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])
    
    # Handle retry button
    retry_button.click(
        reset_model_state,
        None,
        [status_text]
    )
    
    # Show/hide retry button based on model status
    def update_retry_button_visibility():
        return gr.Button(visible=MODEL_LOAD_FAILED)
    
    # Update retry button visibility when status changes
    bot_msg.then(update_retry_button_visibility, None, [retry_button])
    retry_button.click(update_retry_button_visibility, None, [retry_button])

    gr.Examples(
        list(examples.values()),
        chatbot,
        chatbot,
        example_labels=list(examples.keys()),
        examples_per_page=20,
    )


def summarize_batch_results(results):
    summary = Counter(results)
    summary_str = "\n".join(f"{k}: {v}" for k, v in summary.most_common())
    return summary_str


def run_batch_inference(files, task, progress=gr.Progress()) -> str:
    model = load_model_if_needed()
    if model is None:
        if MODEL_LOADING:
            return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
        elif MODEL_LOAD_FAILED:
            return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again."
        else:
            return "Demo mode: Model not loaded. Please check the model configuration."
    
    outputs = []
    prompt = "<Audio><AudioHere></Audio> " + task

    for file in progress.tqdm(files):
        outputs.append(prompt_lm([file], [{"role": "user", "content": prompt}]))

    batch_summary: str = summarize_batch_results(outputs)
    report = f"Batch summary:\n{batch_summary}\n\n"
    return report


def multi_extension_glob_mask(mask_base, *extensions):
    mask_ext = ["[{}]".format("".join(set(c))) for c in zip(*extensions)]
    if not mask_ext or len(set(len(e) for e in extensions)) > 1:
        mask_ext.append("*")
    return mask_base + "".join(mask_ext)


def _batch_tab(file_selection: Literal["upload", "explorer"] = "upload"):
    if file_selection == "explorer":
        files = gr.FileExplorer(
            glob=multi_extension_glob_mask("**.", "mp3", "flac", "wav"),
            label="Select audio files",
            file_count="multiple",
        )
    elif file_selection == "upload":
        files = gr.Files(label="Uploaded files", file_types=["audio"], height=300)
    task = gr.Textbox(label="Task", placeholder="Enter task...", show_label=True)

    process_btn = gr.Button("Process")
    output = gr.TextArea()

    process_btn.click(
        run_batch_inference,
        [files, task],
        [output],
    )


def to_raven_format(outputs: dict[int, str], chunk_len: int = 10) -> str:
    def get_line(row, start, end, annotation):
        return f"{row}\tSpectrogram 1\t1\t{start}\t{end}\t0\t8000\t{annotation}"

    raven_output = ["Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tAnnotation"]
    current_offset = 0
    last_label = ""
    row = 1

    # The "Selection" column is just the row number.
    # The "view" column will always say "Spectrogram 1".
    # Channel can always be "1".
    # For the frequency bounds we can just use 0 and 1/2 the sample rate
    for offset, label in sorted(outputs.items()):
        if label != last_label and last_label:
            raven_output.append(get_line(row, current_offset, offset, last_label))
            current_offset = offset
            row += 1
        if not last_label:
            current_offset = offset
        if label != "None":
            last_label = label
        else:
            last_label = ""
    if last_label:
        raven_output.append(get_line(row, current_offset, current_offset + chunk_len, last_label))

    return "\n".join(raven_output)


def _run_long_recording_inference(file, task, chunk_len: int = 10, hop_len: int = 5, progress=gr.Progress()):
    model = load_model_if_needed()
    if model is None:
        if MODEL_LOADING:
            return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment.", None
        elif MODEL_LOAD_FAILED:
            return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again.", None
        else:
            return "Demo mode: Model not loaded. Please check the model configuration.", None
    
    cuda_enabled = torch.cuda.is_available()
    outputs = {}
    offset = 0

    prompt = f"<Audio><AudioHere></Audio> {task}"
    prompt = CONFIG.model.prompt_template.format(prompt)

    for batch in progress.tqdm(generate_sample_batches(file, cuda_enabled, chunk_len=chunk_len, hop_len=hop_len)):
        prompt_strs = [prompt] * len(batch["audio_chunk_sizes"])
        with torch.cuda.amp.autocast(dtype=torch.float16):
            llm_answers = model.generate(batch, CONFIG.generate, prompts=prompt_strs)
        for answer in llm_answers:
            outputs[offset] = answer
            offset += hop_len

    report = f"Number of chunks: {len(outputs)}\n\n"
    for offset in sorted(outputs.keys()):
        report += f"{offset:02d}s:\t{outputs[offset]}\n"

    raven_output = to_raven_format(outputs, chunk_len=chunk_len)
    with tempfile.NamedTemporaryFile(mode="w", prefix="raven-", suffix=".txt", delete=False) as f:
        f.write(raven_output)
        raven_file = f.name

    return report, raven_file


def _long_recording_tab():
    audio_input = gr.Audio(label="Upload audio file", type="filepath")
    task = gr.Dropdown(
        [
            "What are the common names for the species in the audio, if any?",
            "Caption the audio.",
            "Caption the audio, using the scientific name for any animal species.",
            "Caption the audio, using the common name for any animal species.",
            "What is the scientific name for the focal species in the audio?",
            "What is the common name for the focal species in the audio?",
            "What is the family of the focal species in the audio?",
            "What is the genus of the focal species in the audio?",
            "What is the taxonomic name of the focal species in the audio?",
            "What call types are heard from the focal species in the audio?",
            "What is the life stage of the focal species in the audio?",
        ],
        label="Tasks",
        allow_custom_value=True,
    )
    with gr.Accordion("Advanced options", open=False):
        hop_len = gr.Slider(1, 10, 5, label="Hop length (seconds)", step=1)
        chunk_len = gr.Slider(1, 10, 10, label="Chunk length (seconds)", step=1)
    process_btn = gr.Button("Process")
    output = gr.TextArea()
    download_raven = gr.DownloadButton("Download Raven file")

    process_btn.click(
        _run_long_recording_inference,
        [audio_input, task, chunk_len, hop_len],
        [output, download_raven],
    )


def main(
    assets_dir: Path,
    cfg_path: str | Path,
    options: list[str] = [],
    device: str = "cpu",
):
    global CONFIG
    
    try:
        cfg = Config.from_sources(yaml_file=cfg_path, cli_args=options)
        CONFIG = cfg
        print("Configuration loaded successfully")
    except Exception as e:
        print(f"Warning: Could not load config: {e}")
        print("Running in demo mode")
        CONFIG = None

    # Check if assets directory exists, if not create a placeholder
    if not assets_dir.exists():
        print(f"Warning: Assets directory {assets_dir} does not exist")
        assets_dir.mkdir(exist_ok=True)
        
    # Create placeholder audio files if they don't exist
    laz_audio = assets_dir / "Lazuli_Bunting_yell-YELLLAZB20160625SM303143.mp3"
    frog_audio = assets_dir / "nri-GreenTreeFrogEvergladesNP.mp3"
    robin_audio = assets_dir / "yell-YELLAMRO20160506SM3.mp3"
    vireo_audio = assets_dir / "yell-YELLWarblingVireoMammoth20150614T29ms.mp3"

    examples = {
        "Caption the audio (Lazuli Bunting)": [
            [
                user_message({"path": str(laz_audio)}),
                user_message("Caption the audio."),
            ]
        ],
        "Caption the audio (Green Tree Frog)": [
            [
                user_message({"path": str(frog_audio)}),
                user_message("Caption the audio, using the common name for any animal species."),
            ]
        ],
        "Caption the audio (American Robin)": [
            [
                user_message({"path": str(robin_audio)}),
                user_message("Caption the audio."),
            ]
        ],
        "Caption the audio (Warbling Vireo)": [
            [
                user_message({"path": str(vireo_audio)}),
                user_message("Caption the audio."),
            ]
        ],
    }

    with gr.Blocks(title="NatureLM-audio", theme=gr.themes.Default(primary_hue="slate")) as app:
        with gr.Tabs():
            with gr.Tab("Chat"):
                _chat_tab(examples)
            with gr.Tab("Batch"):
                _batch_tab()
            with gr.Tab("Long Recording"):
                _long_recording_tab()

    return app
    
# At the bottom of the file:
app = main(
    assets_dir=Path("assets"),
    cfg_path=Path("configs/inference.yml"),
    options=[],
    device="cpu", # TODO: from config depending on zerogpu! (to change)
)

# Launch the app
if __name__ == "__main__":
    app.launch()