gagannarula's picture
App-redesign (#1)
32d3fde verified
raw
history blame
11.5 kB
# Copyright (2024) Earth Species Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import time
from datetime import datetime
from pathlib import Path
from typing import Any, Literal
import numpy as np
import resampy
import soundfile as sf
import torch
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
logger = logging.getLogger(__name__)
TARGET_SAMPLE_RATE = 16_000
def snr_scale(clean, noise, snr):
# Ensure both clean and noise have the same length
assert clean.shape == noise.shape, "Clean and noise must have the same shape."
# Compute power (mean squared amplitude)
power_signal = torch.mean(clean**2)
power_noise = torch.mean(noise**2)
# Prevent division by zero
epsilon = 1e-10
power_noise = torch.clamp(power_noise, min=epsilon)
# Calculate desired noise power based on SNR
desired_noise_power = power_signal / (10 ** (snr / 10))
# Scale noise to achieve the desired noise power
scale = torch.sqrt(desired_noise_power / power_noise)
scaled_noise = scale * noise
return scaled_noise
def time_scale(signal, scale=2.0, rngnp=None, seed=42):
if rngnp is None:
rngnp = np.random.default_rng(seed=seed)
scaling = np.power(scale, rngnp.uniform(-1, 1))
output_size = int(signal.shape[-1] * scaling)
ref = torch.arange(output_size, device=signal.device, dtype=signal.dtype).div_(scaling)
ref1 = ref.clone().type(torch.int64)
ref2 = torch.min(ref1 + 1, torch.full_like(ref1, signal.shape[-1] - 1, dtype=torch.int64))
r = ref - ref1.type(ref.type())
scaled_signal = signal[..., ref1] * (1 - r) + signal[..., ref2] * r
## trim or zero pad to torche original size
if scaled_signal.shape[-1] > signal.shape[-1]:
nframes_offset = (scaled_signal.shape[-1] - signal.shape[-1]) // 2
scaled_signal = scaled_signal[..., nframes_offset : nframes_offset + signal.shape[-1]]
else:
nframes_diff = signal.shape[-1] - scaled_signal.shape[-1]
pad_left = int(np.random.uniform() * nframes_diff)
pad_right = nframes_diff - pad_left
scaled_signal = F.pad(input=scaled_signal, pad=(pad_left, pad_right), mode="constant", value=0)
return scaled_signal
def mel_frequencies(n_mels, fmin, fmax):
def _hz_to_mel(f):
return 2595 * np.log10(1 + f / 700)
def _mel_to_hz(m):
return 700 * (10 ** (m / 2595) - 1)
low = _hz_to_mel(fmin)
high = _hz_to_mel(fmax)
mels = np.linspace(low, high, n_mels)
return _mel_to_hz(mels)
def now_as_str() -> str:
return datetime.now().strftime("%Y%m%d%H%M")
def apply_to_sample(f, sample):
if len(sample) == 0:
return {}
def _apply(x):
if torch.is_tensor(x):
return f(x)
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
else:
return x
return _apply(sample)
def move_to_device(sample, device):
def _move_to_device(tensor):
return tensor.to(device)
return apply_to_sample(_move_to_device, sample)
def prepare_sample(samples, cuda_enabled=True):
if cuda_enabled:
samples = move_to_device(samples, "cuda")
# TODO fp16 support
return samples
def prepare_sample_dist(samples, device):
samples = move_to_device(samples, device)
# TODO fp16 support
return samples
class IterLoader:
"""
A wrapper to convert DataLoader as an infinite iterator.
Modified from:
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
"""
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
self._dataloader = dataloader
self.iter_loader = iter(self._dataloader)
self._use_distributed = use_distributed
self._epoch = 0
@property
def epoch(self) -> int:
return self._epoch
def __next__(self):
try:
data = next(self.iter_loader)
except StopIteration:
self._epoch += 1
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
self._dataloader.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self.iter_loader = iter(self._dataloader)
data = next(self.iter_loader)
return data
def __iter__(self):
return self
def __len__(self):
return len(self._dataloader)
def prepare_one_sample(wav_path: str, wav_processor=None, cuda_enabled=True) -> dict:
"""Prepare a single sample for inference.
Args:
wav_path: Path to the audio file.
wav_processor: A function to process the audio file.
cuda_enabled: Whether to move the sample to the GPU.
"""
audio, sr = sf.read(wav_path)
if len(audio.shape) == 2: # stereo to mono
audio = audio.mean(axis=1)
if len(audio) < sr: # pad audio to at least 1s
sil = np.zeros(sr - len(audio), dtype=float)
audio = np.concatenate((audio, sil), axis=0)
audio = audio[: sr * 10] # truncate audio to at most 10s
# spectrogram = wav_processor(audio, sampling_rate=sr, return_tensors="pt")["input_features"]
print("audio shape", audio.shape)
audio_t = torch.tensor(audio).unsqueeze(0)
audio_t = torchaudio.functional.resample(audio_t, sr, TARGET_SAMPLE_RATE)
print("audio shape after resample", audio_t.shape)
samples = {
"raw_wav": audio_t,
"padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
"audio_chunk_sizes": [1],
}
if cuda_enabled:
samples = move_to_device(samples, "cuda")
return samples
def prepare_one_sample_waveform(audio, cuda_enabled=True, sr=16000):
print("shape", audio.shape)
if len(audio.shape) == 2: # stereo to mono
print("converting stereo to mono?")
audio = audio.mean(axis=1)
if len(audio) < sr: # pad audio to at least 1s
sil = np.zeros(sr - len(audio), dtype=float)
audio = np.concatenate((audio, sil), axis=0)
audio = audio[: sr * 10] # truncate audio to at most 30s
samples = {
"raw_wav": torch.tensor(audio).unsqueeze(0).type(torch.DoubleTensor),
"padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
}
if cuda_enabled:
samples = move_to_device(samples, "cuda")
return samples
def prepare_sample_waveforms(audio_paths, cuda_enabled=True, sr=TARGET_SAMPLE_RATE, max_length_seconds=10):
batch_len = sr # minimum length of audio
audios = []
for audio_path in audio_paths:
audio, loaded_sr = sf.read(audio_path)
if len(audio.shape) == 2:
audio = audio[:, 0]
audio = audio[: loaded_sr * 10]
audio = resampy.resample(audio, loaded_sr, sr)
audio = torch.from_numpy(audio)
if len(audio) < sr * max_length_seconds:
pad_size = sr * max_length_seconds - len(audio)
audio = torch.nn.functional.pad(audio, (0, pad_size))
audio = torch.clamp(audio, -1.0, 1.0)
if len(audio) > batch_len:
batch_len = len(audio)
audios.append(audio)
padding_mask = torch.zeros((len(audios), batch_len), dtype=torch.bool)
for i in range(len(audios)):
if len(audios[i]) < batch_len:
pad_len = batch_len - len(audios[i])
sil = torch.zeros(pad_len, dtype=torch.float32)
audios[i] = torch.cat((audios[i], sil), dim=0)
padding_mask[i, len(audios[i]) :] = True
audios = torch.stack(audios, dim=0)
samples = {
"raw_wav": audios,
"padding_mask": padding_mask,
"audio_chunk_sizes": [len(audio_paths)],
}
if cuda_enabled:
samples = move_to_device(samples, "cuda")
return samples
def generate_sample_batches(
audio_path,
cuda_enabled: bool = True,
sr: int = TARGET_SAMPLE_RATE,
chunk_len: int = 10,
hop_len: int = 5,
batch_size: int = 4,
):
audio, loaded_sr = sf.read(audio_path)
if len(audio.shape) == 2: # stereo to mono
audio = audio.mean(axis=1)
audio = torchaudio.functional.resample(torch.from_numpy(audio), loaded_sr, sr)
hop_len = hop_len * sr
chunk_len = max(len(audio), chunk_len * sr)
chunks = []
for i in range(0, len(audio), hop_len):
chunk = audio[i : i + chunk_len]
if len(chunk) < chunk_len:
break
chunks.append(chunk)
for i in range(0, len(chunks), batch_size):
batch = chunks[i : i + batch_size]
padding_mask = torch.zeros((len(batch), sr * chunk_len), dtype=torch.bool)
batch = torch.stack(batch, dim=0)
samples = {
"raw_wav": batch,
"padding_mask": padding_mask,
"audio_chunk_sizes": [1 for _ in range(len(batch))],
}
if cuda_enabled:
samples = move_to_device(samples, "cuda")
yield samples
def prepare_samples_for_detection(samples, prompt, label):
prompts = [prompt for i in range(len(samples["raw_wav"]))]
labels = [label for i in range(len(samples["raw_wav"]))]
task = ["detection" for i in range(len(samples["raw_wav"]))]
samples["prompt"] = prompts
samples["text"] = labels
samples["task"] = task
return samples
def universal_torch_load(
f: str | os.PathLike,
*,
cache_mode: Literal["none", "use", "force"] = "none",
**kwargs,
) -> Any:
"""
Wrapper function for torch.load that can handle GCS paths.
This function provides a convenient way to load PyTorch objects from both local and
Google Cloud Storage (GCS) paths. For GCS paths, it can optionally caches the
downloaded files locally to avoid repeated downloads.
The cache location is determined by:
1. The ESP_CACHE_HOME environment variable if set
2. Otherwise defaults to ~/.cache/esp/
Args:
f: File-like object, string or PathLike object.
Can be a local path or a GCS path (starting with 'gs://').
cache_mode (str, optional): Cache mode for GCS files. Options are:
"none": No caching (use bucket directly)
"use": Use cache if available, download if not
"force": Force redownload even if cache exists
Defaults to "none".
**kwargs: Additional keyword arguments passed to torch.load().
Returns:
The object loaded from the file using torch.load.
Raises:
IsADirectoryError: If the GCS path points to a directory instead of a file.
FileNotFoundError: If the local file does not exist.
"""
f = Path(f)
if not f.exists():
raise FileNotFoundError(f"File does not exist: {f}")
with open(f, "rb") as opened_file:
return torch.load(opened_file, **kwargs)