Spaces:
Running
Running
File size: 16,616 Bytes
5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 53532e2 ffa73e4 df8c6ad 3622663 04cf1bc 105b065 ffa73e4 3622663 ffa73e4 5843fdb ffa73e4 04cf1bc ffa73e4 04cf1bc ffa73e4 04cf1bc ffa73e4 3622663 04cf1bc ffa73e4 04cf1bc 3622663 04cf1bc adc8711 faec259 04cf1bc ffa73e4 04cf1bc ffa73e4 04cf1bc ffa73e4 04cf1bc ffa73e4 fd3ac75 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb ffa73e4 5843fdb fd3ac75 5843fdb ffa73e4 faec259 53532e2 5843fdb ffa73e4 faec259 4bb0230 faec259 4bb0230 faec259 5843fdb ffa73e4 faec259 5843fdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import os
import json
import traceback
from typing import Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers import AutoProcessor, AutoModel
import gradio as gr
# --- Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# For 8-bit models, the vision dtype is handled by bitsandbytes
# We still need HEAD_DTYPE for our classifier head
HEAD_DTYPE = torch.float32
# --- DINOv3 Specific Constants ---
DINOV3_PATCH_SIZE = 16
MAX_DINOV3_RESOLUTION = 4096
print(f"Using device: {DEVICE}")
print(f"Head model dtype: {HEAD_DTYPE}")
# --- Model Definitions (Copied from hybrid_model.py) ---
# (RMSNorm, SwiGLUFFN, ResBlockRMS, HybridHeadModel classes are unchanged and go here)
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def _norm(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
class SwiGLUFFN(nn.Module):
def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None, act_layer: nn.Module = nn.SiLU, dropout: float = 0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or int(in_features * 8 / 3 / 2 * 2 )
hidden_features = (hidden_features + 1) // 2 * 2
self.w12 = nn.Linear(in_features, hidden_features * 2, bias=False)
self.act = act_layer()
self.dropout1 = nn.Dropout(dropout)
self.w3 = nn.Linear(hidden_features, out_features, bias=False)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
gate_val, up_val = self.w12(x).chunk(2, dim=-1)
x = self.dropout1(self.act(gate_val) * up_val)
x = self.dropout2(self.w3(x))
return x
class ResBlockRMS(nn.Module):
def __init__(self, ch: int, dropout: float = 0.0, rms_norm_eps: float = 1e-6):
super().__init__()
self.norm = RMSNorm(ch, eps=rms_norm_eps)
self.ffn = SwiGLUFFN(in_features=ch, dropout=dropout)
def forward(self, x):
return x + self.ffn(self.norm(x))
class HybridHeadModel(nn.Module):
def __init__(self, features: int, hidden_dim: int = 1280, num_classes: int = 2, use_attention: bool = True,
num_attn_heads: int = 16, attn_dropout: float = 0.1, num_res_blocks: int = 3,
dropout_rate: float = 0.1, rms_norm_eps: float = 1e-6, output_mode: str = 'linear'):
super().__init__()
self.features = features; self.hidden_dim = hidden_dim; self.num_classes = num_classes
self.use_attention = use_attention; self.output_mode = output_mode.lower()
self.attention = None; self.norm_attn = None
if self.use_attention:
actual_num_heads = num_attn_heads
if features % num_attn_heads != 0:
possible_heads = [h for h in [1, 2, 4, 8, 16, 32] if features % h == 0] # Expanded list
if not possible_heads: actual_num_heads = 1
else: actual_num_heads = min(possible_heads, key=lambda x: abs(x-num_attn_heads))
if actual_num_heads != num_attn_heads: print(f"HybridHead Warning: Adjusting heads {num_attn_heads}->{actual_num_heads} for features={features}")
self.attention = nn.MultiheadAttention(features, actual_num_heads, dropout=attn_dropout, batch_first=True, bias=True)
self.norm_attn = RMSNorm(features, eps=rms_norm_eps)
mlp_layers = [nn.Linear(features, hidden_dim), RMSNorm(hidden_dim, eps=rms_norm_eps)]
for _ in range(num_res_blocks): mlp_layers.append(ResBlockRMS(hidden_dim, dropout=dropout_rate, rms_norm_eps=rms_norm_eps))
mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps))
down_proj_hidden = hidden_dim // 2
mlp_layers.append(SwiGLUFFN(hidden_dim, hidden_features=down_proj_hidden, out_features=down_proj_hidden, dropout=dropout_rate))
mlp_layers.append(RMSNorm(down_proj_hidden, eps=rms_norm_eps))
mlp_layers.append(nn.Linear(down_proj_hidden, num_classes))
self.mlp_head = nn.Sequential(*mlp_layers)
def forward(self, x: torch.Tensor):
if self.use_attention and self.attention is not None:
x_seq = x.unsqueeze(1); attn_output, _ = self.attention(x_seq, x_seq, x_seq); x = self.norm_attn(x + attn_output.squeeze(1))
logits = self.mlp_head(x.to(HEAD_DTYPE))
output_mode = self.output_mode
if output_mode == 'linear': output = logits
elif output_mode == 'sigmoid': output = torch.sigmoid(logits)
elif output_mode == 'softmax': output = F.softmax(logits, dim=-1)
elif output_mode == 'tanh_scaled': output = (torch.tanh(logits) + 1.0) / 2.0
else: raise RuntimeError(f"Invalid output_mode '{output_mode}'.")
if self.num_classes == 1 and output.ndim == 2 and output.shape[1] == 1: output = output.squeeze(-1)
return output
# --- Model Catalog ---
MODEL_CATALOG = {
"AnatomyFlaws-v15.5 (DINOv3 7b bf16)": {
"repo_id": "Enferlain/lumi-classifier",
"config_filename": "AnatomyFlaws-v15.5_dinov3_7b_bnb_fl.config.json",
"head_filename": "AnatomyFlaws-v15.5_dinov3_7b_bnb_fl_s3K_best_val.safetensors",
# Explicitly define the vision model repo ID to prevent errors
# "vision_model_repo_id": "Enferlain/dinov3-vit7b16-pretrain-lvd1689m-8bit" bnb 8bit
# "vision_model_repo_id": "Enferlain/dinov3-vit7b16-pretrain-lvd1689m-int4", int4
"vision_model_repo_id": "PIA-SPACE-LAB/dinov3-vit7b16-pretrain-lvd1689m",
},
"AnatomyFlaws-v14.7 (SigLIP naflex)": {
"repo_id": "Enferlain/lumi-classifier",
"config_filename": "AnatomyFlaws-v14.7_adabelief_fl_naflex_4670.config.json",
"head_filename": "AnatomyFlaws-v14.7_adabelief_fl_naflex_4670_s2K.safetensors",
# The base SigLIP model is not custom, so we use its official ID
"vision_model_repo_id": "google/siglip2-so400m-patch16-naflex"
},
}
# --- Model Manager Class ---
class ModelManager:
def __init__(self, catalog: Dict[str, Dict[str, str]]):
self.catalog = catalog
self.current_model_name: str = None
self.vision_model: nn.Module = None
self.hf_processor: Any = None
self.head_model: HybridHeadModel = None
self.labels: Dict[int, str] = None
self.config: Dict[str, Any] = None
def load_model(self, model_name: str):
if model_name == self.current_model_name:
return
if model_name not in self.catalog:
raise ValueError(f"Model '{model_name}' not found.")
print(f"Switching to model: {model_name}...")
model_info = self.catalog[model_name]
repo_id = model_info["repo_id"]
config_filename = model_info["config_filename"]
head_filename = model_info["head_filename"]
vision_model_repo_id = model_info["vision_model_repo_id"]
try:
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
with open(config_path, 'r', encoding='utf-8') as f:
self.config = json.load(f)
print(f"Loading vision model: {vision_model_repo_id}")
self.hf_processor = AutoProcessor.from_pretrained(vision_model_repo_id, trust_remote_code=True)
# --- UPDATED: CPU-compatible loading logic ---
if DEVICE == "cpu":
# For CPU, load unquantized model with BF16 (original format)
print("Loading unquantized model for CPU...")
try:
self.vision_model = AutoModel.from_pretrained(
vision_model_repo_id,
torch_dtype=torch.bfloat16, # Keep original BF16 format
device_map={"": "cpu"}, # Force CPU device mapping
trust_remote_code=True
).eval()
print("Successfully loaded model in BF16 format.")
except Exception as bf16_error:
print(f"BF16 loading failed: {bf16_error}")
print("Falling back to FP32...")
self.vision_model = AutoModel.from_pretrained(
vision_model_repo_id,
torch_dtype=torch.float32, # Fallback to FP32
device_map={"": "cpu"},
trust_remote_code=True
).eval()
print("Successfully loaded model in FP32 format.")
else:
# For GPU environments (unchanged)
self.vision_model = AutoModel.from_pretrained(
vision_model_repo_id,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
).to(DEVICE).eval()
# Load classifier head (unchanged)
head_model_path = hf_hub_download(repo_id=repo_id, filename=head_filename)
print(f"Loading head model: {head_filename}")
state_dict = load_file(head_model_path, device='cpu')
head_params = self.config.get("predictor_params", self.config)
self.head_model = HybridHeadModel(
features=head_params.get("features"),
hidden_dim=head_params.get("hidden_dim"),
num_classes=self.config.get("num_classes"),
use_attention=head_params.get("use_attention"),
num_attn_heads=head_params.get("num_attn_heads"),
attn_dropout=head_params.get("attn_dropout"),
num_res_blocks=head_params.get("num_res_blocks"),
dropout_rate=head_params.get("dropout_rate"),
output_mode=head_params.get("output_mode", "linear")
)
self.head_model.load_state_dict(state_dict, strict=True)
self.head_model.to(DEVICE).eval()
raw_labels = self.config.get("labels", {'0': 'Bad', '1': 'Good'})
self.labels = {int(k): (v['name'] if isinstance(v, dict) else v) for k, v in raw_labels.items()}
self.current_model_name = model_name
print(f"Successfully loaded '{model_name}'.")
except Exception as e:
self.current_model_name = None
raise RuntimeError(f"Failed to load model '{model_name}': {e}\n{traceback.format_exc()}")
# --- Global Model Manager Instance ---
model_manager = ModelManager(MODEL_CATALOG)
# --- Prediction Function (v3 from before) ---
def predict_anatomy_v3(image: Image.Image, model_name: str):
if image is None:
return {"Error": 1.0, "Info": 0.0} # Return numeric values
try:
model_manager.load_model(model_name)
pil_image = image.convert("RGB")
emb = None
with torch.no_grad():
base_model_type = model_manager.config.get("base_vision_model", "")
if "dinov3" in base_model_type.lower():
current_w, current_h = pil_image.size
img_to_process = pil_image
if max(current_w, current_h) > MAX_DINOV3_RESOLUTION:
scale = MAX_DINOV3_RESOLUTION / max(current_w, current_h)
current_w, current_h = int(current_w * scale), int(current_h * scale)
img_to_process = pil_image.resize((current_w, current_h), Image.Resampling.LANCZOS)
new_w = ((current_w + DINOV3_PATCH_SIZE - 1) // DINOV3_PATCH_SIZE) * DINOV3_PATCH_SIZE
new_h = ((current_h + DINOV3_PATCH_SIZE - 1) // DINOV3_PATCH_SIZE) * DINOV3_PATCH_SIZE
if new_w != current_w or new_h != current_h:
img_to_process = img_to_process.resize((new_w, new_h), Image.Resampling.LANCZOS)
inputs = model_manager.hf_processor(images=[img_to_process], return_tensors="pt")
# For 8-bit, send inputs to the same device as the model
pixel_values = inputs.pixel_values.to(model_manager.vision_model.device)
outputs = model_manager.vision_model(pixel_values=pixel_values)
last_hidden_state = outputs.last_hidden_state
nreg = getattr(model_manager.vision_model.config, 'num_register_tokens', 0)
patch_embeddings = last_hidden_state[:, 1 + nreg:]
emb = torch.mean(patch_embeddings, dim=1)
elif "siglip" in base_model_type.lower():
inputs = model_manager.hf_processor(images=[pil_image], return_tensors="pt")
pixel_values = inputs.get("pixel_values").to(device=DEVICE, dtype=torch.float16)
if "naflex" in base_model_type.lower():
attention_mask = inputs.get("pixel_attention_mask").to(device=DEVICE)
spatial_shapes = inputs.get("spatial_shapes")
model_call_kwargs = {"pixel_values": pixel_values, "attention_mask": attention_mask,
"spatial_shapes": torch.tensor(spatial_shapes, dtype=torch.long).to(DEVICE)}
vision_model_component = getattr(model_manager.vision_model, 'vision_model', model_manager.vision_model)
emb = vision_model_component(**model_call_kwargs).pooler_output
else: emb = model_manager.vision_model.get_image_features(pixel_values=pixel_values)
else: raise ValueError(f"Unknown base model type for embedding: {base_model_type}")
if emb is None: raise ValueError("Failed to get embedding.")
norm = torch.linalg.norm(emb.float(), dim=-1, keepdim=True).clamp(min=1e-8)
emb_normalized = emb / norm.to(emb.dtype)
with torch.no_grad():
prediction = model_manager.head_model(emb_normalized.to(DEVICE, dtype=HEAD_DTYPE))
output_probs = {}
if model_manager.head_model.num_classes == 2:
probs = F.softmax(prediction.squeeze().float(), dim=-1)
output_probs[model_manager.labels[0]] = probs[0].item()
output_probs[model_manager.labels[1]] = probs[1].item()
else:
prob_good = torch.sigmoid(prediction.squeeze()).item()
output_probs[model_manager.labels[0]] = 1.0 - prob_good
output_probs[model_manager.labels[1]] = prob_good
return output_probs
except Exception as e:
print(f"Error during prediction: {e}\n{traceback.format_exc()}")
# Return properly formatted error for Gradio Label
error_msg = str(e)[:50] + "..." if len(str(e)) > 50 else str(e)
return {
f"Error: {error_msg}": 1.0,
"Please check logs": 0.0
}
# --- Gradio Interface ---
DESCRIPTION = """
## Lumi's Anatomy Flaw Classifier Demo ✨
Select a model from the dropdown, then upload an image to classify its anatomy/structural correctness.
Will be slow since it runs on cpu, ~2minutes on dinov3.
"""
EXAMPLE_DIR = "examples"
default_model = list(MODEL_CATALOG.keys())[0]
# 1. Find the paths to our example images
example_paths = []
if os.path.isdir(EXAMPLE_DIR):
example_paths = [os.path.join(EXAMPLE_DIR, fname) for fname in sorted(os.listdir(EXAMPLE_DIR)) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# 2. Create the nested list Gradio needs: [[image, model_name], [image, model_name], ...]
examples_nested = []
if example_paths:
examples_nested = [[path, default_model] for path in example_paths]
# 3. Create the interface, passing the correctly formatted list
interface = gr.Interface(
fn=predict_anatomy_v3,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(choices=list(MODEL_CATALOG.keys()), value=default_model, label="Classifier Model")
],
outputs=gr.Label(label="Class Probabilities", num_top_classes=2),
title="Lumi's Anatomy Classifier",
description=DESCRIPTION,
examples=examples_nested if examples_nested else None, # Pass the new nested list
allow_flagging="never",
cache_examples=True
)
if __name__ == "__main__":
try:
print("Pre-loading default model...")
model_manager.load_model(default_model)
except Exception as e:
print(f"WARNING: Could not pre-load default model. Error: {e}")
interface.launch() |