Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
"""
|
| 3 |
-
Gradio demo for Wan2.1 First
|
| 4 |
-
|
| 5 |
-
streams high-level progress, and auto-offers the .mp4 for download.
|
| 6 |
"""
|
| 7 |
import os
|
| 8 |
import numpy as np
|
|
@@ -10,99 +9,104 @@ import torch
|
|
| 10 |
import gradio as gr
|
| 11 |
from diffusers import WanImageToVideoPipeline, AutoencoderKLWan
|
| 12 |
from diffusers.utils import export_to_video
|
| 13 |
-
from transformers import
|
| 14 |
from PIL import Image
|
| 15 |
import torchvision.transforms.functional as TF
|
| 16 |
|
| 17 |
-
#
|
| 18 |
# CONFIG
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def load_pipeline():
|
| 26 |
-
# 1)
|
| 27 |
image_encoder = CLIPVisionModel.from_pretrained(
|
| 28 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
| 29 |
)
|
| 30 |
-
# 2) VAE
|
| 31 |
vae = AutoencoderKLWan.from_pretrained(
|
| 32 |
MODEL_ID, subfolder="vae", torch_dtype=DTYPE
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
)
|
| 38 |
-
# 4) load everything with a balanced device map
|
| 39 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 40 |
MODEL_ID,
|
| 41 |
-
vae=vae,
|
| 42 |
image_encoder=image_encoder,
|
| 43 |
-
|
| 44 |
torch_dtype=DTYPE,
|
| 45 |
-
device_map="balanced",
|
|
|
|
| 46 |
)
|
| 47 |
return pipe
|
| 48 |
|
| 49 |
-
# load once at import
|
| 50 |
PIPE = load_pipeline()
|
| 51 |
|
| 52 |
|
| 53 |
-
#
|
| 54 |
# UTILS
|
|
|
|
| 55 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
| 56 |
-
"""Resize while respecting multiples of the model’s patch size."""
|
| 57 |
ar = img.height / img.width
|
| 58 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
| 59 |
-
h =
|
| 60 |
-
w =
|
| 61 |
return img.resize((w, h), Image.LANCZOS), h, w
|
| 62 |
|
| 63 |
def center_crop_resize(img: Image.Image, h, w):
|
| 64 |
-
"""Crop-and-resize to exactly (h, w)."""
|
| 65 |
ratio = max(w / img.width, h / img.height)
|
| 66 |
-
img
|
| 67 |
(round(img.width * ratio), round(img.height * ratio)),
|
| 68 |
Image.LANCZOS
|
| 69 |
)
|
| 70 |
return TF.center_crop(img, [h, w])
|
| 71 |
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
#
|
|
|
|
| 75 |
def generate(
|
| 76 |
first_frame: Image.Image,
|
| 77 |
-
last_frame:
|
| 78 |
-
prompt:
|
| 79 |
-
|
| 80 |
-
steps:
|
| 81 |
-
guidance:
|
| 82 |
-
num_frames:
|
| 83 |
-
seed:
|
| 84 |
-
fps:
|
| 85 |
-
progress=gr.Progress(), #
|
| 86 |
):
|
| 87 |
-
#
|
| 88 |
if seed == -1:
|
| 89 |
seed = torch.seed()
|
| 90 |
gen = torch.Generator(device=PIPE.device).manual_seed(seed)
|
| 91 |
|
| 92 |
-
# 0
|
| 93 |
progress(0.0, desc="Resizing first frame���")
|
| 94 |
-
|
| 95 |
-
if last_frame.size !=
|
| 96 |
-
progress(0.
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
| 104 |
prompt=prompt,
|
| 105 |
-
negative_prompt=
|
| 106 |
height=h,
|
| 107 |
width=w,
|
| 108 |
num_frames=num_frames,
|
|
@@ -111,17 +115,18 @@ def generate(
|
|
| 111 |
generator=gen,
|
| 112 |
)
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
progress(0.
|
| 116 |
-
video_path = export_to_video(
|
| 117 |
-
progress(1.0, desc="Done!")
|
| 118 |
|
| 119 |
-
#
|
|
|
|
| 120 |
return video_path, seed
|
| 121 |
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
# UI
|
|
|
|
| 125 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 126 |
gr.Markdown("## Wan2.1 FLF2V – First & Last Frame → Video")
|
| 127 |
|
|
@@ -129,26 +134,26 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 129 |
first_img = gr.Image(label="First frame", type="pil")
|
| 130 |
last_img = gr.Image(label="Last frame", type="pil")
|
| 131 |
|
| 132 |
-
prompt
|
| 133 |
-
negative
|
| 134 |
|
| 135 |
with gr.Accordion("Advanced parameters", open=False):
|
| 136 |
-
steps = gr.Slider(10, 50, value=30, step=1, label="
|
| 137 |
-
guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance
|
| 138 |
num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Frames")
|
| 139 |
fps = gr.Slider(4, 30, value=16, step=1, label="FPS")
|
| 140 |
-
|
| 141 |
|
| 142 |
-
run_btn
|
| 143 |
-
download
|
| 144 |
-
|
| 145 |
|
| 146 |
run_btn.click(
|
| 147 |
fn=generate,
|
| 148 |
-
inputs=[first_img, last_img, prompt, negative,
|
| 149 |
-
|
| 150 |
-
outputs=[download,
|
| 151 |
)
|
| 152 |
|
| 153 |
-
# queue tasks
|
| 154 |
-
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
"""
|
| 3 |
+
Gradio demo for Wan2.1 FLF2V – First & Last Frame → Video
|
| 4 |
+
Auto-loads the fast processor and avoids missing preprocessor_config.json.
|
|
|
|
| 5 |
"""
|
| 6 |
import os
|
| 7 |
import numpy as np
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
from diffusers import WanImageToVideoPipeline, AutoencoderKLWan
|
| 11 |
from diffusers.utils import export_to_video
|
| 12 |
+
from transformers import CLIPVisionModel
|
| 13 |
from PIL import Image
|
| 14 |
import torchvision.transforms.functional as TF
|
| 15 |
|
| 16 |
+
# -----------------------------------------------------------------------------
|
| 17 |
# CONFIG
|
| 18 |
+
# -----------------------------------------------------------------------------
|
| 19 |
+
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"
|
| 20 |
+
DTYPE = torch.float16
|
| 21 |
+
MAX_AREA = 1280 * 720
|
| 22 |
+
DEFAULT_FRAMES = 81
|
| 23 |
+
|
| 24 |
+
# Persist cache so safetensors only download once
|
| 25 |
+
os.environ["HF_HOME"] = "/mnt/data/huggingface"
|
| 26 |
+
|
| 27 |
+
# -----------------------------------------------------------------------------
|
| 28 |
+
# LOAD PIPELINE ONCE
|
| 29 |
+
# -----------------------------------------------------------------------------
|
| 30 |
def load_pipeline():
|
| 31 |
+
# 1) Image encoder (fp32)
|
| 32 |
image_encoder = CLIPVisionModel.from_pretrained(
|
| 33 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
| 34 |
)
|
| 35 |
+
# 2) VAE (half-precision) + slicing
|
| 36 |
vae = AutoencoderKLWan.from_pretrained(
|
| 37 |
MODEL_ID, subfolder="vae", torch_dtype=DTYPE
|
| 38 |
)
|
| 39 |
+
vae.enable_slicing()
|
| 40 |
+
|
| 41 |
+
# 3) Pipeline, balanced across GPU & CPU, fast processor by default
|
|
|
|
|
|
|
| 42 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 43 |
MODEL_ID,
|
|
|
|
| 44 |
image_encoder=image_encoder,
|
| 45 |
+
vae=vae,
|
| 46 |
torch_dtype=DTYPE,
|
| 47 |
+
device_map="balanced",
|
| 48 |
+
use_fast=True, # get the fast CLIPImageProcessor internally
|
| 49 |
)
|
| 50 |
return pipe
|
| 51 |
|
|
|
|
| 52 |
PIPE = load_pipeline()
|
| 53 |
|
| 54 |
|
| 55 |
+
# -----------------------------------------------------------------------------
|
| 56 |
# UTILS
|
| 57 |
+
# -----------------------------------------------------------------------------
|
| 58 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
|
|
|
| 59 |
ar = img.height / img.width
|
| 60 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
| 61 |
+
h = int(np.sqrt(max_area * ar)) // mod * mod
|
| 62 |
+
w = int(np.sqrt(max_area / ar)) // mod * mod
|
| 63 |
return img.resize((w, h), Image.LANCZOS), h, w
|
| 64 |
|
| 65 |
def center_crop_resize(img: Image.Image, h, w):
|
|
|
|
| 66 |
ratio = max(w / img.width, h / img.height)
|
| 67 |
+
img = img.resize(
|
| 68 |
(round(img.width * ratio), round(img.height * ratio)),
|
| 69 |
Image.LANCZOS
|
| 70 |
)
|
| 71 |
return TF.center_crop(img, [h, w])
|
| 72 |
|
| 73 |
|
| 74 |
+
# -----------------------------------------------------------------------------
|
| 75 |
+
# GENERATION WITH PROGRESS STREAMING
|
| 76 |
+
# -----------------------------------------------------------------------------
|
| 77 |
def generate(
|
| 78 |
first_frame: Image.Image,
|
| 79 |
+
last_frame: Image.Image,
|
| 80 |
+
prompt: str,
|
| 81 |
+
negative: str,
|
| 82 |
+
steps: int,
|
| 83 |
+
guidance: float,
|
| 84 |
+
num_frames: int,
|
| 85 |
+
seed: int,
|
| 86 |
+
fps: int,
|
| 87 |
+
progress= gr.Progress(), # built-in streamer
|
| 88 |
):
|
| 89 |
+
# seed
|
| 90 |
if seed == -1:
|
| 91 |
seed = torch.seed()
|
| 92 |
gen = torch.Generator(device=PIPE.device).manual_seed(seed)
|
| 93 |
|
| 94 |
+
# 0–15%: resize
|
| 95 |
progress(0.0, desc="Resizing first frame���")
|
| 96 |
+
first_resized, h, w = aspect_resize(first_frame)
|
| 97 |
+
if last_frame.size != first_resized.size:
|
| 98 |
+
progress(0.15, desc="Resizing last frame…")
|
| 99 |
+
last_resized = center_crop_resize(last_frame, h, w)
|
| 100 |
+
else:
|
| 101 |
+
last_resized = first_resized # same size
|
| 102 |
+
|
| 103 |
+
# 15–25%: setup
|
| 104 |
+
progress(0.25, desc="Launching pipeline…")
|
| 105 |
+
out = PIPE(
|
| 106 |
+
image=first_resized,
|
| 107 |
+
last_image=last_resized,
|
| 108 |
prompt=prompt,
|
| 109 |
+
negative_prompt=negative or None,
|
| 110 |
height=h,
|
| 111 |
width=w,
|
| 112 |
num_frames=num_frames,
|
|
|
|
| 115 |
generator=gen,
|
| 116 |
)
|
| 117 |
|
| 118 |
+
# 25–90%: we assume the pipeline prints its own bars in console
|
| 119 |
+
progress(0.90, desc="Building video…")
|
| 120 |
+
video_path = export_to_video(out.frames[0], fps=fps)
|
|
|
|
| 121 |
|
| 122 |
+
# done
|
| 123 |
+
progress(1.0, desc="Done!")
|
| 124 |
return video_path, seed
|
| 125 |
|
| 126 |
|
| 127 |
+
# -----------------------------------------------------------------------------
|
| 128 |
+
# GRADIO UI
|
| 129 |
+
# -----------------------------------------------------------------------------
|
| 130 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 131 |
gr.Markdown("## Wan2.1 FLF2V – First & Last Frame → Video")
|
| 132 |
|
|
|
|
| 134 |
first_img = gr.Image(label="First frame", type="pil")
|
| 135 |
last_img = gr.Image(label="Last frame", type="pil")
|
| 136 |
|
| 137 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
|
| 138 |
+
negative = gr.Textbox(label="Negative prompt (optional)", placeholder="blurry, lowres")
|
| 139 |
|
| 140 |
with gr.Accordion("Advanced parameters", open=False):
|
| 141 |
+
steps = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
| 142 |
+
guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance")
|
| 143 |
num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Frames")
|
| 144 |
fps = gr.Slider(4, 30, value=16, step=1, label="FPS")
|
| 145 |
+
seed_input = gr.Number(value=-1, precision=0, label="Seed (-1=random)")
|
| 146 |
|
| 147 |
+
run_btn = gr.Button("Generate")
|
| 148 |
+
download = gr.File(label="Download .mp4", interactive=False)
|
| 149 |
+
seed_used = gr.Number(label="Seed used", interactive=False)
|
| 150 |
|
| 151 |
run_btn.click(
|
| 152 |
fn=generate,
|
| 153 |
+
inputs=[ first_img, last_img, prompt, negative,
|
| 154 |
+
steps, guidance, num_frames, seed_input, fps ],
|
| 155 |
+
outputs=[ download, seed_used ],
|
| 156 |
)
|
| 157 |
|
| 158 |
+
# queue() so tasks are serialized with a top-right mini-progress indicator
|
| 159 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|