Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -58,16 +58,15 @@ from typing import List
|
|
| 58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 59 |
from sentence_transformers import SentenceTransformer
|
| 60 |
from pypdf import PdfReader
|
| 61 |
-
import torch
|
| 62 |
-
import os
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
# FastAPI
|
| 66 |
-
#
|
| 67 |
app = FastAPI(
|
| 68 |
title="Harshal AI Backend",
|
| 69 |
version="1.0.0",
|
| 70 |
-
description="Human-like
|
| 71 |
)
|
| 72 |
|
| 73 |
app.add_middleware(
|
|
@@ -77,123 +76,109 @@ app.add_middleware(
|
|
| 77 |
allow_headers=["*"],
|
| 78 |
)
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
-
#
|
| 83 |
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 84 |
|
| 85 |
-
print(f"π Loading LLM: {MODEL_NAME}")
|
| 86 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 87 |
-
|
| 88 |
llm = AutoModelForCausalLM.from_pretrained(
|
| 89 |
MODEL_NAME,
|
| 90 |
-
dtype=torch.float32,
|
|
|
|
| 91 |
)
|
| 92 |
llm.eval()
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
#
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def chunk_text(text, max_chars=450, overlap=80):
|
| 107 |
text = " ".join(text.split())
|
| 108 |
-
|
| 109 |
-
|
| 110 |
while start < len(text):
|
| 111 |
-
end = start +
|
| 112 |
-
|
| 113 |
start = end - overlap
|
| 114 |
-
return chunks
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
-
"""Read resume.pdf, chunk it, embed it."""
|
| 119 |
-
global resume_rag
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
return
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
full += p.extract_text() or ""
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
convert_to_tensor=True,
|
| 135 |
-
normalize_embeddings=True
|
| 136 |
-
)
|
| 137 |
-
resume_rag = {"chunks": chunks, "embs": embs}
|
| 138 |
-
print(f"β
Resume RAG ready ({len(chunks)} chunks)")
|
| 139 |
|
| 140 |
-
|
| 141 |
-
print("β RAG build error:", e)
|
| 142 |
-
resume_rag = None
|
| 143 |
|
| 144 |
|
| 145 |
-
def
|
| 146 |
-
if
|
| 147 |
return ""
|
| 148 |
|
| 149 |
q = embedder.encode([query], convert_to_tensor=True, normalize_embeddings=True)[0]
|
| 150 |
-
sims = torch.nn.functional.cosine_similarity(q.unsqueeze(0),
|
| 151 |
-
|
| 152 |
|
| 153 |
-
return "\n\n".join(
|
| 154 |
|
| 155 |
|
| 156 |
-
|
| 157 |
|
| 158 |
-
#
|
| 159 |
-
#
|
| 160 |
-
#
|
| 161 |
-
class
|
| 162 |
role: str
|
| 163 |
content: str
|
| 164 |
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
# ======================================================
|
| 171 |
-
# 4) CHAT ROUTE β HUMAN-LIKE HARSHAAL AI
|
| 172 |
-
# ======================================================
|
| 173 |
@app.post("/chat")
|
| 174 |
-
def chat(req:
|
| 175 |
-
|
| 176 |
-
if not req.messages:
|
| 177 |
-
return {"reply": "Hey, ask me something π"}
|
| 178 |
|
| 179 |
user_msg = req.messages[-1].content.strip()
|
|
|
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
rag_text = get_rag_context(user_msg)
|
| 183 |
-
|
| 184 |
-
# -------- Persona --------
|
| 185 |
persona = f"""
|
| 186 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
| 187 |
-
Speak naturally, casual but professional.
|
| 188 |
-
Never say you're an AI or model.
|
| 189 |
-
Use resume context when relevant.
|
| 190 |
-
Keep replies short (2β4 sentences).
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
""".strip()
|
| 195 |
|
| 196 |
-
# -------- Model Chat Format --------
|
| 197 |
messages = [
|
| 198 |
{"role": "system", "content": persona},
|
| 199 |
{"role": "user", "content": user_msg}
|
|
@@ -202,27 +187,26 @@ Resume knowledge:
|
|
| 202 |
ids = tokenizer.apply_chat_template(
|
| 203 |
messages,
|
| 204 |
return_tensors="pt",
|
| 205 |
-
add_generation_prompt=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
)
|
| 207 |
|
| 208 |
-
with torch.no_grad():
|
| 209 |
-
out = llm.generate(
|
| 210 |
-
ids,
|
| 211 |
-
max_new_tokens=150,
|
| 212 |
-
temperature=0.45,
|
| 213 |
-
top_p=0.9,
|
| 214 |
-
repetition_penalty=1.1,
|
| 215 |
-
do_sample=True
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
reply = tokenizer.decode(out[0][ids.shape[-1]:], skip_special_tokens=True).strip()
|
| 219 |
|
| 220 |
return {"reply": reply}
|
| 221 |
|
| 222 |
-
|
| 223 |
-
#
|
| 224 |
-
#
|
| 225 |
-
# ======================================================
|
| 226 |
@app.get("/")
|
| 227 |
-
def
|
| 228 |
-
return {"status": "Harshal AI backend
|
|
|
|
| 58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 59 |
from sentence_transformers import SentenceTransformer
|
| 60 |
from pypdf import PdfReader
|
| 61 |
+
import torch, os
|
|
|
|
| 62 |
|
| 63 |
+
# ======================================
|
| 64 |
+
# FastAPI Base
|
| 65 |
+
# ======================================
|
| 66 |
app = FastAPI(
|
| 67 |
title="Harshal AI Backend",
|
| 68 |
version="1.0.0",
|
| 69 |
+
description="Human-like assistant bound to Harshal's real resume facts."
|
| 70 |
)
|
| 71 |
|
| 72 |
app.add_middleware(
|
|
|
|
| 76 |
allow_headers=["*"],
|
| 77 |
)
|
| 78 |
|
| 79 |
+
# ======================================
|
| 80 |
+
# MODEL (Qwen2.5 1.5B)
|
| 81 |
+
# ======================================
|
| 82 |
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 83 |
|
|
|
|
| 84 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
|
| 85 |
llm = AutoModelForCausalLM.from_pretrained(
|
| 86 |
MODEL_NAME,
|
| 87 |
+
dtype=torch.float32,
|
| 88 |
+
device_map="cpu"
|
| 89 |
)
|
| 90 |
llm.eval()
|
| 91 |
|
| 92 |
+
# ======================================
|
| 93 |
+
# EMBEDDING MODEL
|
| 94 |
+
# ======================================
|
| 95 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 96 |
+
resume_data = None
|
| 97 |
+
RESUME_FILE = "resume.pdf"
|
| 98 |
+
|
| 99 |
+
# ======================================
|
| 100 |
+
# UTIL: Chunk Resume
|
| 101 |
+
# ======================================
|
| 102 |
+
def chunk_text(text, size=450, overlap=80):
|
|
|
|
|
|
|
| 103 |
text = " ".join(text.split())
|
| 104 |
+
out, start = [], 0
|
| 105 |
+
|
| 106 |
while start < len(text):
|
| 107 |
+
end = start + size
|
| 108 |
+
out.append(text[start:end])
|
| 109 |
start = end - overlap
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
return out
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
# ======================================
|
| 114 |
+
# BUILD RAG
|
| 115 |
+
# ======================================
|
| 116 |
+
def load_resume():
|
| 117 |
+
global resume_data
|
| 118 |
+
if not os.path.exists(RESUME_FILE):
|
| 119 |
+
print("β resume.pdf not found")
|
| 120 |
return
|
| 121 |
|
| 122 |
+
reader = PdfReader(RESUME_FILE)
|
| 123 |
+
text = ""
|
| 124 |
+
for pg in reader.pages:
|
| 125 |
+
text += pg.extract_text() or ""
|
|
|
|
| 126 |
|
| 127 |
+
chunks = chunk_text(text)
|
| 128 |
+
embs = embedder.encode(chunks, convert_to_tensor=True, normalize_embeddings=True)
|
| 129 |
+
resume_data = {"chunks": chunks, "embs": embs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
print(f"β
Resume RAG loaded with {len(chunks)} chunks")
|
|
|
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
+
def get_resume_context(query, top_k=3):
|
| 135 |
+
if resume_data is None:
|
| 136 |
return ""
|
| 137 |
|
| 138 |
q = embedder.encode([query], convert_to_tensor=True, normalize_embeddings=True)[0]
|
| 139 |
+
sims = torch.nn.functional.cosine_similarity(q.unsqueeze(0), resume_data["embs"])
|
| 140 |
+
top = torch.topk(sims, k=top_k)
|
| 141 |
|
| 142 |
+
return "\n\n".join(resume_data["chunks"][i] for i in top.indices)
|
| 143 |
|
| 144 |
|
| 145 |
+
load_resume()
|
| 146 |
|
| 147 |
+
# ======================================
|
| 148 |
+
# SCHEMAS
|
| 149 |
+
# ======================================
|
| 150 |
+
class Msg(BaseModel):
|
| 151 |
role: str
|
| 152 |
content: str
|
| 153 |
|
| 154 |
+
class ChatReq(BaseModel):
|
| 155 |
+
messages: List[Msg]
|
| 156 |
|
| 157 |
+
# ======================================
|
| 158 |
+
# CHAT
|
| 159 |
+
# ======================================
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
@app.post("/chat")
|
| 161 |
+
def chat(req: ChatReq):
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
user_msg = req.messages[-1].content.strip()
|
| 164 |
+
resume_context = get_resume_context(user_msg)
|
| 165 |
|
| 166 |
+
# STRICT anti-hallucination persona
|
|
|
|
|
|
|
|
|
|
| 167 |
persona = f"""
|
| 168 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
VERY IMPORTANT RULES:
|
| 171 |
+
- NEVER say you are an AI, model, assistant, chatbot.
|
| 172 |
+
- ONLY answer using information available in the resume context.
|
| 173 |
+
- If the resume does NOT contain the answer β say: "I haven't mentioned this in my resume."
|
| 174 |
+
- Do NOT invent employment history, projects, companies, or skills.
|
| 175 |
+
- Use a natural, short, human tone (2β4 sentences).
|
| 176 |
+
- Stay consistent with resume facts.
|
| 177 |
+
|
| 178 |
+
Resume facts (DO NOT IGNORE):
|
| 179 |
+
{resume_context}
|
| 180 |
""".strip()
|
| 181 |
|
|
|
|
| 182 |
messages = [
|
| 183 |
{"role": "system", "content": persona},
|
| 184 |
{"role": "user", "content": user_msg}
|
|
|
|
| 187 |
ids = tokenizer.apply_chat_template(
|
| 188 |
messages,
|
| 189 |
return_tensors="pt",
|
| 190 |
+
add_generation_prompt=True
|
| 191 |
+
).to(llm.device)
|
| 192 |
+
|
| 193 |
+
out = llm.generate(
|
| 194 |
+
ids,
|
| 195 |
+
max_new_tokens=160,
|
| 196 |
+
temperature=0.45,
|
| 197 |
+
top_p=0.9,
|
| 198 |
+
repetition_penalty=1.1,
|
| 199 |
+
do_sample=True,
|
| 200 |
+
pad_token_id=tokenizer.eos_token_id
|
| 201 |
)
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
reply = tokenizer.decode(out[0][ids.shape[-1]:], skip_special_tokens=True).strip()
|
| 204 |
|
| 205 |
return {"reply": reply}
|
| 206 |
|
| 207 |
+
# ======================================
|
| 208 |
+
# HEALTH
|
| 209 |
+
# ======================================
|
|
|
|
| 210 |
@app.get("/")
|
| 211 |
+
def health():
|
| 212 |
+
return {"status": "Harshal AI backend running with Qwen 1.5B + strict RAG π―"}
|