Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -50,6 +50,7 @@
|
|
| 50 |
# routes=app.routes
|
| 51 |
# )
|
| 52 |
|
|
|
|
| 53 |
from fastapi import FastAPI
|
| 54 |
from fastapi.middleware.cors import CORSMiddleware
|
| 55 |
from pydantic import BaseModel
|
|
@@ -60,182 +61,149 @@ from pypdf import PdfReader
|
|
| 60 |
import torch
|
| 61 |
import os
|
| 62 |
|
| 63 |
-
# ============================================================
|
| 64 |
-
# FastAPI APP
|
| 65 |
-
# ============================================================
|
| 66 |
-
|
| 67 |
app = FastAPI(
|
| 68 |
title="Harshal AI Backend",
|
| 69 |
-
version="1.0.0"
|
| 70 |
-
description="Human-like AI Assistant for Harshal's Portfolio"
|
| 71 |
)
|
| 72 |
|
|
|
|
| 73 |
app.add_middleware(
|
| 74 |
CORSMiddleware,
|
| 75 |
allow_origins=["*"],
|
| 76 |
-
allow_credentials=True,
|
| 77 |
allow_methods=["*"],
|
| 78 |
allow_headers=["*"],
|
| 79 |
)
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
# 1) LOAD MAIN
|
| 83 |
-
#
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
|
| 89 |
-
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
-
LLM_MODEL_NAME,
|
| 91 |
torch_dtype=torch.float32,
|
| 92 |
device_map="cpu"
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
print("β
LLM Loaded Successfully")
|
| 96 |
-
|
| 97 |
-
# ============================================================
|
| 98 |
-
# 2) RAG: LOAD EMBEDDINGS FROM RESUME
|
| 99 |
-
# ============================================================
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
|
| 108 |
def chunk_text(text, max_chars=450, overlap=80):
|
| 109 |
-
text = " ".join(text.
|
| 110 |
chunks, start = [], 0
|
|
|
|
| 111 |
while start < len(text):
|
| 112 |
end = start + max_chars
|
| 113 |
chunks.append(text[start:end])
|
| 114 |
start = end - overlap
|
|
|
|
| 115 |
return chunks
|
| 116 |
|
| 117 |
|
| 118 |
-
def
|
| 119 |
-
global
|
| 120 |
-
|
| 121 |
-
|
|
|
|
| 122 |
return
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
text = "".join((p.extract_text() or "") for p in reader.pages)
|
| 127 |
-
chunks = chunk_text(text)
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
print("β
Resume RAG ready.")
|
| 135 |
-
except Exception as e:
|
| 136 |
-
print(f"β RAG Error: {e}")
|
| 137 |
-
resume_vectors = None
|
| 138 |
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
|
| 144 |
-
def
|
| 145 |
-
if
|
| 146 |
-
return ""
|
| 147 |
-
try:
|
| 148 |
-
q = embed_query(query)
|
| 149 |
-
sims = torch.nn.functional.cosine_similarity(q.unsqueeze(0), resume_vectors["embeddings"])
|
| 150 |
-
top = torch.topk(sims, k=min(top_k, len(sims))).indices
|
| 151 |
-
return "\n\n".join(resume_vectors["chunks"][i] for i in top)
|
| 152 |
-
except:
|
| 153 |
return ""
|
| 154 |
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
| 157 |
|
| 158 |
-
# ============================================================
|
| 159 |
-
# 3) CLEAN REQUEST SCHEMA
|
| 160 |
-
# ============================================================
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
role: str
|
| 164 |
content: str
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
messages: List[Message]
|
| 169 |
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
# 4) CHAT
|
| 173 |
-
#
|
| 174 |
-
|
| 175 |
@app.post("/chat")
|
| 176 |
-
def chat(req:
|
| 177 |
-
try:
|
| 178 |
-
if not req.messages:
|
| 179 |
-
return {"reply": "I didn't get any question yet π"}
|
| 180 |
|
| 181 |
-
|
| 182 |
-
if not user_msg:
|
| 183 |
-
return {"reply": "Could you repeat that? I didn't catch it."}
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
| 188 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
| 189 |
-
Speak casually, friendly, confident.
|
| 190 |
-
Never say you are an AI.
|
| 191 |
-
Keep replies short (2β4 sentences).
|
| 192 |
-
Use resume context when helpful.
|
| 193 |
-
If unknown, answer honestly.
|
| 194 |
-
|
| 195 |
-
Resume info:
|
| 196 |
-
{resume_context}
|
| 197 |
-
""".strip()
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
add_generation_prompt=True,
|
| 208 |
-
).to(llm_model.device)
|
| 209 |
-
|
| 210 |
-
with torch.no_grad():
|
| 211 |
-
output_ids = llm_model.generate(
|
| 212 |
-
input_ids,
|
| 213 |
-
max_new_tokens=170,
|
| 214 |
-
temperature=0.55,
|
| 215 |
-
top_p=0.9,
|
| 216 |
-
repetition_penalty=1.08,
|
| 217 |
-
do_sample=True,
|
| 218 |
-
pad_token_id=tokenizer.eos_token_id
|
| 219 |
-
)
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
return {"reply": "Oops, I hit a snag. Try again shortly."}
|
| 232 |
|
|
|
|
| 233 |
|
| 234 |
-
# ============================================================
|
| 235 |
-
# 5) ROOT HEALTH CHECK
|
| 236 |
-
# ============================================================
|
| 237 |
|
| 238 |
@app.get("/")
|
| 239 |
-
def
|
| 240 |
-
return {"
|
| 241 |
-
|
|
|
|
| 50 |
# routes=app.routes
|
| 51 |
# )
|
| 52 |
|
| 53 |
+
|
| 54 |
from fastapi import FastAPI
|
| 55 |
from fastapi.middleware.cors import CORSMiddleware
|
| 56 |
from pydantic import BaseModel
|
|
|
|
| 61 |
import torch
|
| 62 |
import os
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
app = FastAPI(
|
| 65 |
title="Harshal AI Backend",
|
| 66 |
+
version="1.0.0"
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
+
# CORS so Next.js can call backend
|
| 70 |
app.add_middleware(
|
| 71 |
CORSMiddleware,
|
| 72 |
allow_origins=["*"],
|
|
|
|
| 73 |
allow_methods=["*"],
|
| 74 |
allow_headers=["*"],
|
| 75 |
)
|
| 76 |
|
| 77 |
+
# ======================================
|
| 78 |
+
# 1) LOAD MAIN MODEL (Qwen2.5 1.5B)
|
| 79 |
+
# ======================================
|
| 80 |
+
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 81 |
|
| 82 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 83 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
| 84 |
+
MODEL_NAME,
|
|
|
|
|
|
|
|
|
|
| 85 |
torch_dtype=torch.float32,
|
| 86 |
device_map="cpu"
|
| 87 |
)
|
| 88 |
+
llm.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# ======================================
|
| 91 |
+
# 2) LOAD EMBEDDING MODEL + RAG
|
| 92 |
+
# ======================================
|
| 93 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 94 |
+
embedder = SentenceTransformer(EMBED_MODEL)
|
| 95 |
|
| 96 |
+
RESUME = "resume.pdf"
|
| 97 |
+
resume_rag = None
|
| 98 |
|
| 99 |
|
| 100 |
def chunk_text(text, max_chars=450, overlap=80):
|
| 101 |
+
text = " ".join(text.split())
|
| 102 |
chunks, start = [], 0
|
| 103 |
+
|
| 104 |
while start < len(text):
|
| 105 |
end = start + max_chars
|
| 106 |
chunks.append(text[start:end])
|
| 107 |
start = end - overlap
|
| 108 |
+
|
| 109 |
return chunks
|
| 110 |
|
| 111 |
|
| 112 |
+
def build_rag():
|
| 113 |
+
global resume_rag
|
| 114 |
+
|
| 115 |
+
if not os.path.exists(RESUME):
|
| 116 |
+
print("β resume.pdf NOT FOUND β RAG disabled")
|
| 117 |
return
|
| 118 |
|
| 119 |
+
reader = PdfReader(RESUME)
|
| 120 |
+
text = ""
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
for p in reader.pages:
|
| 123 |
+
text += p.extract_text() or ""
|
|
|
|
| 124 |
|
| 125 |
+
chunks = chunk_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
embs = embedder.encode(chunks, convert_to_tensor=True, normalize_embeddings=True)
|
| 128 |
|
| 129 |
+
resume_rag = {"chunks": chunks, "embs": embs}
|
| 130 |
+
print("β
RAG Ready with", len(chunks), "chunks")
|
| 131 |
|
| 132 |
|
| 133 |
+
def get_rag_context(query):
|
| 134 |
+
if resume_rag is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
return ""
|
| 136 |
|
| 137 |
+
q = embedder.encode([query], convert_to_tensor=True, normalize_embeddings=True)[0]
|
| 138 |
+
sims = torch.nn.functional.cosine_similarity(q.unsqueeze(0), resume_rag["embs"])
|
| 139 |
+
top = torch.topk(sims, k=3)
|
| 140 |
|
| 141 |
+
return "\n\n".join(resume_rag["chunks"][i] for i in top.indices)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
build_rag()
|
| 145 |
+
|
| 146 |
+
# ======================================
|
| 147 |
+
# 3) SWAGGER DATA MODELS
|
| 148 |
+
# ======================================
|
| 149 |
+
class Msg(BaseModel):
|
| 150 |
role: str
|
| 151 |
content: str
|
| 152 |
|
| 153 |
+
class ChatReq(BaseModel):
|
| 154 |
+
messages: List[Msg]
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
+
# ======================================
|
| 158 |
+
# 4) CHAT ROUTE (Human-like Harshal)
|
| 159 |
+
# ======================================
|
|
|
|
| 160 |
@app.post("/chat")
|
| 161 |
+
def chat(req: ChatReq):
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
user_msg = req.messages[-1].content.strip()
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
rag = get_rag_context(user_msg)
|
| 166 |
|
| 167 |
+
persona = f"""
|
| 168 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
Rules:
|
| 171 |
+
- Do NOT say you are an AI or model.
|
| 172 |
+
- Answer in a human, natural tone.
|
| 173 |
+
- Keep replies short (2β4 sentences).
|
| 174 |
+
- Use resume facts when relevant.
|
| 175 |
+
- If unknown, answer honestly.
|
| 176 |
|
| 177 |
+
Resume context:
|
| 178 |
+
{rag}
|
| 179 |
+
""".strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
messages = [
|
| 182 |
+
{"role": "system", "content": persona},
|
| 183 |
+
{"role": "user", "content": user_msg}
|
| 184 |
+
]
|
| 185 |
|
| 186 |
+
ids = tokenizer.apply_chat_template(
|
| 187 |
+
messages,
|
| 188 |
+
return_tensors="pt",
|
| 189 |
+
add_generation_prompt=True
|
| 190 |
+
).to(llm.device)
|
| 191 |
|
| 192 |
+
out = llm.generate(
|
| 193 |
+
ids,
|
| 194 |
+
max_new_tokens=150,
|
| 195 |
+
temperature=0.5,
|
| 196 |
+
top_p=0.9,
|
| 197 |
+
repetition_penalty=1.05,
|
| 198 |
+
do_sample=True
|
| 199 |
+
)
|
| 200 |
|
| 201 |
+
gen = out[0][ids.shape[-1]:]
|
| 202 |
+
reply = tokenizer.decode(gen, skip_special_tokens=True).strip()
|
|
|
|
| 203 |
|
| 204 |
+
return {"reply": reply}
|
| 205 |
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
@app.get("/")
|
| 208 |
+
def health():
|
| 209 |
+
return {"status": "Harshal AI backend is running with Qwen 1.5B + RAG π―"}
|
|
|