Spaces:
Sleeping
Sleeping
File size: 7,149 Bytes
78ba665 2500245 78ba665 25e6fe3 78ba665 536656a 78ba665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
import pandas as pd
import json
import tempfile
import os
# ==============================
# App Configuration
# ==============================
st.set_page_config(
page_title="MVP",
page_icon="",
layout="centered"
)
# initialize session state
if 'example_mgf' not in st.session_state:
st.session_state['example_mgf'] = None
if 'example_json' not in st.session_state:
st.session_state['example_json'] = None
# ==============================
# Introductory Section
# ==============================
st.title("MVP Playground")
st.markdown("""
This web app lets you test our trained model on your own data.
### ๐ References
๐ **Preprint:** [Learning from All Views: A Multiview Contrastive Framework for Metabolite Annotation](https://www.biorxiv.org/content/10.1101/2025.11.12.688047v1)
๐ฆ **Source Code:** [Hugging Face Repository](https://huggingface.co/spaces/HassounLab/MVP)
---
### ๐ง Available Models
We have two models trained on the [MassSpecGym](https://github.com/pluskal-lab/MassSpecGym) training dataset:
- **binnedSpec** โ trained on binned spectra and does not require formula information.
- **formSpec** โ our main model trained on spectra with subformula annotations. Requires formula and adduct information.
---
### โ๏ธ Instructions
1. **Prepare two input files:**
- **Spectra file (.mgf)** โ your experimental spectra data.
- **Candidates file (.json)** โ candidate molecules for each spectrum.
2. **Select a model** from the dropdown.
3. **Click โRun Predictionโ** to start processing.
โ ๏ธ **Note:** For fair usage, the web app limits computation to **1,000 pairs**. Each pair consists of one spectrum and one candidate molecule. For example, if you have 1 spectrum and 5 candidates, that counts as 5 pairs.
4. After processing, youโll receive a downloadable **CSV file** with your results.
---
### ๐ Example Input Files
You can download example files to understand the required format:
- [Download sample spectra (MGF)](https://huggingface.co/spaces/HassounLab/MVP/blob/main/data/app/data.mgf)
- [Download sample candidates (JSON)](https://huggingface.co/spaces/HassounLab/MVP/blob/main/data/app/identifier_to_candidates.json)
Here's an example of the spectra file format (.mgf):
```
BEGIN IONS
TITLE=example_spectrum
PEPMASS=100.0
CHARGE=1+
FORMULA=C10H12O2 # optional, required for formSpec model
ADDUCT=[M+H]+ # optional, required for formSpec model
100.0 1000
101.0 1500
102.0 2000
END IONS
```
---
### ๐ก Tip
If you want to process **more than 1,000 pairs**,
please **clone the repository** and run it locally with GPU support for faster computation.
""")
# ==============================
# File Upload Section
# ==============================
st.subheader("๐ค Upload Your Files")
# --- File uploaders ---
mgf_file = st.file_uploader("Upload spectra file (.mgf)", type=["mgf"])
json_file = st.file_uploader("Upload candidates file (.json)", type=["json"])
# --- Example files button ---
if st.button("Use Example Files"):
with open("data/app/data.mgf", "rb") as f:
st.session_state["example_mgf"] = f.read()
with open("data/app/identifier_to_candidates.json", "rb") as f:
st.session_state["example_json"] = f.read()
st.success("โ
Example files loaded!")
# --- Determine which files to use ---
if mgf_file is not None:
mgf_bytes = mgf_file.read()
elif "example_mgf" in st.session_state:
mgf_bytes = st.session_state["example_mgf"]
else:
mgf_bytes = None
if json_file is not None:
json_bytes = json_file.read()
elif "example_json" in st.session_state:
json_bytes = st.session_state["example_json"]
else:
json_bytes = None
# --- Display results ---
if mgf_bytes and json_bytes:
st.success("Files are ready to use!")
else:
st.info("Please upload your files or 'Use Example Files'.")
# ==============================
# Model Selection and Run Button
# ==============================
model_choice = st.selectbox(
"Select model to use:",
options=["binnedSpec", "formSpec"]
)
run_button = st.button("๐ Run Prediction")
# ==============================
# Run Prediction
# ==============================
if run_button:
if not mgf_bytes or not json_bytes:
st.error("Please upload both a spectra (.mgf) and candidates (.json) file.")
else:
with st.spinner("Running predictions... please wait โณ", show_time=True):
# Save uploaded files to temporary paths
st.write("Saving files to temporary paths...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mgf") as tmp_mgf:
tmp_mgf.write(mgf_bytes)
mgf_path = tmp_mgf.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp_json:
tmp_json.write(json_bytes)
candidates_pth = tmp_json.name
# Check number of pairs in candidates file
st.write("Checking number of pairs in candidates file...")
with open(candidates_pth, 'r') as f:
candidates_data = json.load(f)
total_pairs = sum(len(cands) for cands in candidates_data.values())
if total_pairs > 1000:
st.error(f"โ ๏ธ Too many pairs ({total_pairs})! Please limit to 1,000 pairs for the web app.")
st.stop()
# preprocess spectra
st.write("Preprocessing spectra...")
from utils_app import preprocess_spectra, setup_config, run_inference
dataset_pth, subformula_dir = preprocess_spectra(mgf_path, model_choice, mass_diff_thresh=20)
if dataset_pth is None:
st.error("Error in preprocessing spectra. Please check your input files.")
if model_choice == "formSpec":
st.info("Make sure that for 'formSpec' model, each spectrum has 'formula' and 'adduct' metadata.")
st.stop()
# Prepare model config paths
st.write("Preparing model config paths...")
params = setup_config(model_choice, dataset_pth, candidates_pth, subformula_dir)
try:
st.write("Running inference...")
run_inference(params)
except Exception as e:
st.error(f"Error running model inference: {e}")
st.stop()
# Convert to CSV
st.write("Converting to CSV...")
df = pd.read_pickle(params['df_test_path'])
csv_path = params['df_test_path'].replace(".pkl", ".csv")
df.to_csv(csv_path, index=False)
st.success(f"โ
Done! Model: {model_choice}")
st.download_button(
label="๐ฅ Download Results CSV",
data=open(csv_path, "rb").read(),
file_name=os.path.basename(csv_path),
mime="text/csv"
)
st.info("To run larger datasets or enable GPU acceleration, please clone the repo and run locally.")
# ==============================
# Footer
# ==============================
st.markdown("---")
|