File size: 24,821 Bytes
8f4d405
 
 
 
 
 
b3aba24
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
 
 
 
 
 
 
 
 
b3aba24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3aba24
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3aba24
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3aba24
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# llm_router.py - UPDATED FOR LOCAL GPU MODEL LOADING
import logging
import asyncio
from typing import Dict, Optional
from .models_config import LLM_CONFIG

# Import GatedRepoError for handling gated repositories
try:
    from huggingface_hub.exceptions import GatedRepoError
except ImportError:
    # Fallback if huggingface_hub is not available
    GatedRepoError = Exception

logger = logging.getLogger(__name__)

class LLMRouter:
    def __init__(self, hf_token, use_local_models: bool = True):
        self.hf_token = hf_token
        self.health_status = {}
        self.use_local_models = use_local_models
        self.local_loader = None
        
        logger.info("LLMRouter initialized")
        if hf_token:
            logger.info("HF token available")
        else:
            logger.warning("No HF token provided")
        
        # Initialize local model loader if enabled
        if self.use_local_models:
            try:
                from .local_model_loader import LocalModelLoader
                self.local_loader = LocalModelLoader()
                logger.info("✓ Local model loader initialized (GPU-based inference)")
                
                # Note: Pre-loading will happen on first request (lazy loading)
                # Models will be loaded on-demand to avoid blocking startup
                logger.info("Models will be loaded on-demand for faster startup")
            except Exception as e:
                logger.warning(f"Could not initialize local model loader: {e}. Falling back to API.")
                logger.warning("This is normal if transformers/torch not available")
                self.use_local_models = False
                self.local_loader = None
    
    async def route_inference(self, task_type: str, prompt: str, **kwargs):
        """
        Smart routing based on task specialization
        Tries local models first, falls back to HF Inference API if needed
        """
        logger.info(f"Routing inference for task: {task_type}")
        model_config = self._select_model(task_type)
        logger.info(f"Selected model: {model_config['model_id']}")
        
        # Try local model first if available
        if self.use_local_models and self.local_loader:
            try:
                # Handle embedding generation separately
                if task_type == "embedding_generation":
                    result = await self._call_local_embedding(model_config, prompt, **kwargs)
                else:
                    result = await self._call_local_model(model_config, prompt, task_type, **kwargs)
                
                if result is not None:
                    logger.info(f"Inference complete for {task_type} (local model)")
                    return result
                else:
                    logger.warning("Local model returned None, falling back to API")
            except Exception as e:
                logger.warning(f"Local model inference failed: {e}. Falling back to API.")
                logger.debug("Exception details:", exc_info=True)
        
        # Fallback to HF Inference API
        logger.info("Using HF Inference API")
        # Health check and fallback logic
        if not await self._is_model_healthy(model_config["model_id"]):
            logger.warning(f"Model unhealthy, using fallback")
            model_config = self._get_fallback_model(task_type)
            logger.info(f"Fallback model: {model_config['model_id']}")
            
        result = await self._call_hf_endpoint(model_config, prompt, task_type, **kwargs)
        logger.info(f"Inference complete for {task_type}")
        return result
    
    async def _call_local_model(self, model_config: dict, prompt: str, task_type: str, **kwargs) -> Optional[str]:
        """Call local model for inference."""
        if not self.local_loader:
            return None
        
        model_id = model_config["model_id"]
        max_tokens = kwargs.get('max_tokens', 512)
        temperature = kwargs.get('temperature', 0.7)
        
        try:
            # Ensure model is loaded
            if model_id not in self.local_loader.loaded_models:
                logger.info(f"Loading model {model_id} on demand...")
                # Check if model config specifies quantization
                use_4bit = model_config.get("use_4bit_quantization", False)
                use_8bit = model_config.get("use_8bit_quantization", False)
                # Fallback to default quantization settings if not specified
                if not use_4bit and not use_8bit:
                    quantization_config = LLM_CONFIG.get("quantization_settings", {})
                    use_4bit = quantization_config.get("default_4bit", True)
                    use_8bit = quantization_config.get("default_8bit", False)
                
                try:
                    self.local_loader.load_chat_model(
                        model_id, 
                        load_in_8bit=use_8bit,
                        load_in_4bit=use_4bit
                    )
                except GatedRepoError as e:
                    logger.error(f"❌ Cannot access gated repository {model_id}")
                    logger.error(f"   Visit https://huggingface.co/{model_id.split(':')[0] if ':' in model_id else model_id} to request access.")
                    
                    # Try fallback model if available
                    fallback_model_id = model_config.get("fallback")
                    if fallback_model_id:
                        logger.warning(f"Attempting fallback model: {fallback_model_id}")
                        try:
                            # Create fallback config
                            fallback_config = model_config.copy()
                            fallback_config["model_id"] = fallback_model_id
                            
                            # Retry with fallback model
                            return await self._call_local_model(fallback_config, prompt, task_type, **kwargs)
                        except Exception as fallback_error:
                            logger.error(f"Fallback model also failed: {fallback_error}")
                            logger.warning("Falling back to HF Inference API")
                            return None
                    else:
                        logger.warning("No fallback model configured, falling back to HF Inference API")
                        return None
            
            # Format as chat messages if needed
            messages = [{"role": "user", "content": prompt}]
            
            # Generate using local model
            result = await asyncio.to_thread(
                self.local_loader.generate_chat_completion,
                model_id=model_id,
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature
            )
            
            logger.info(f"Local model {model_id} generated response (length: {len(result)})")
            logger.info("=" * 80)
            logger.info("LOCAL MODEL RESPONSE:")
            logger.info("=" * 80)
            logger.info(f"Model: {model_id}")
            logger.info(f"Task Type: {task_type}")
            logger.info(f"Response Length: {len(result)} characters")
            logger.info("-" * 40)
            logger.info("FULL RESPONSE CONTENT:")
            logger.info("-" * 40)
            logger.info(result)
            logger.info("-" * 40)
            logger.info("END OF RESPONSE")
            logger.info("=" * 80)
            
            return result
            
        except GatedRepoError:
            # Already handled above, return None to fall back to API
            return None
        except Exception as e:
            logger.error(f"Error calling local model: {e}", exc_info=True)
            return None
    
    async def _call_local_embedding(self, model_config: dict, text: str, **kwargs) -> Optional[list]:
        """Call local embedding model."""
        if not self.local_loader:
            return None
        
        model_id = model_config["model_id"]
        
        try:
            # Ensure model is loaded
            if model_id not in self.local_loader.loaded_embedding_models:
                logger.info(f"Loading embedding model {model_id} on demand...")
                try:
                    self.local_loader.load_embedding_model(model_id)
                except GatedRepoError as e:
                    logger.error(f"❌ Cannot access gated repository {model_id}")
                    logger.error(f"   Visit https://huggingface.co/{model_id.split(':')[0] if ':' in model_id else model_id} to request access.")
                    logger.warning("Falling back to HF Inference API")
                    return None
            
            # Generate embedding
            embedding = await asyncio.to_thread(
                self.local_loader.get_embedding,
                model_id=model_id,
                text=text
            )
            
            logger.info(f"Local embedding model {model_id} generated vector (dim: {len(embedding)})")
            return embedding
            
        except Exception as e:
            logger.error(f"Error calling local embedding model: {e}", exc_info=True)
            return None
    
    def _select_model(self, task_type: str) -> dict:
        model_map = {
            "intent_classification": LLM_CONFIG["models"]["classification_specialist"],
            "embedding_generation": LLM_CONFIG["models"]["embedding_specialist"],
            "safety_check": LLM_CONFIG["models"]["safety_checker"],
            "general_reasoning": LLM_CONFIG["models"]["reasoning_primary"],
            "response_synthesis": LLM_CONFIG["models"]["reasoning_primary"]
        }
        return model_map.get(task_type, LLM_CONFIG["models"]["reasoning_primary"])
    
    async def _is_model_healthy(self, model_id: str) -> bool:
        """
        Check if the model is healthy and available
        Mark models as healthy by default - actual availability checked at API call time
        """
        # Check cached health status
        if model_id in self.health_status:
            return self.health_status[model_id]
        
        # All models marked healthy initially - real check happens during API call
        self.health_status[model_id] = True
        return True
    
    def _get_fallback_model(self, task_type: str) -> dict:
        """
        Get fallback model configuration for the task type
        """
        # Fallback mapping
        fallback_map = {
            "intent_classification": LLM_CONFIG["models"]["reasoning_primary"],
            "embedding_generation": LLM_CONFIG["models"]["embedding_specialist"],
            "safety_check": LLM_CONFIG["models"]["reasoning_primary"],
            "general_reasoning": LLM_CONFIG["models"]["reasoning_primary"],
            "response_synthesis": LLM_CONFIG["models"]["reasoning_primary"]
        }
        return fallback_map.get(task_type, LLM_CONFIG["models"]["reasoning_primary"])
    
    async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
        """
        FIXED: Make actual call to Hugging Face Chat Completions API
        Uses the correct chat completions protocol with retry logic and exponential backoff
        
        IMPORTANT: task_type parameter is now properly included in the method signature
        """
        # Retry configuration
        max_retries = kwargs.get('max_retries', 3)
        initial_delay = kwargs.get('initial_delay', 1.0)  # Start with 1 second
        max_delay = kwargs.get('max_delay', 16.0)  # Cap at 16 seconds
        timeout = kwargs.get('timeout', 30)
        
        try:
            import requests
            from requests.exceptions import Timeout, RequestException, ConnectionError as RequestsConnectionError
            
            model_id = model_config["model_id"]
            
            # Use the chat completions endpoint
            api_url = "/static-proxy?url=https%3A%2F%2Frouter.huggingface.co%2Fv1%2Fchat%2Fcompletions%26quot%3B%3C%2Fspan%3E
            
            logger.info(f"Calling HF Chat Completions API for model: {model_id}")
            logger.debug(f"Prompt length: {len(prompt)}")
            logger.info("=" * 80)
            logger.info("LLM API REQUEST - COMPLETE PROMPT:")
            logger.info("=" * 80)
            logger.info(f"Model: {model_id}")
            
            # FIXED: task_type is now properly available as a parameter
            logger.info(f"Task Type: {task_type}")
            logger.info(f"Prompt Length: {len(prompt)} characters")
            logger.info("-" * 40)
            logger.info("FULL PROMPT CONTENT:")
            logger.info("-" * 40)
            logger.info(prompt)
            logger.info("-" * 40)
            logger.info("END OF PROMPT")
            logger.info("=" * 80)
            
            # Prepare the request payload
            max_tokens = kwargs.get('max_tokens', 512)
            temperature = kwargs.get('temperature', 0.7)
            
            payload = {
                "model": model_id,
                "messages": [
                    {
                        "role": "user",
                        "content": prompt
                    }
                ],
                "max_tokens": max_tokens,
                "temperature": temperature,
                "stream": False
            }
            
            headers = {
                "Authorization": f"Bearer {self.hf_token}",
                "Content-Type": "application/json"
            }
            
            # Retry logic with exponential backoff
            last_exception = None
            for attempt in range(max_retries + 1):
                try:
                    if attempt > 0:
                        # Calculate exponential backoff delay
                        delay = min(initial_delay * (2 ** (attempt - 1)), max_delay)
                        logger.warning(f"Retry attempt {attempt}/{max_retries} after {delay:.1f}s delay (exponential backoff)")
                        await asyncio.sleep(delay)
                    
                    logger.info(f"Sending request to: {api_url} (attempt {attempt + 1}/{max_retries + 1})")
                    logger.debug(f"Payload: {payload}")
                    
                    response = requests.post(api_url, json=payload, headers=headers, timeout=timeout)
                    
                    if response.status_code == 200:
                        result = response.json()
                        logger.debug(f"Raw response: {result}")
                        
                        if 'choices' in result and len(result['choices']) > 0:
                            generated_text = result['choices'][0]['message']['content']
                            
                            if not generated_text or generated_text.strip() == "":
                                logger.warning(f"Empty or invalid response, using fallback")
                                return None
                            
                            if attempt > 0:
                                logger.info(f"Successfully retrieved response after {attempt} retry attempts")
                            
                            logger.info(f"HF API returned response (length: {len(generated_text)})")
                            logger.info("=" * 80)
                            logger.info("COMPLETE LLM API RESPONSE:")
                            logger.info("=" * 80)
                            logger.info(f"Model: {model_id}")
                            
                            # FIXED: task_type is now properly available
                            logger.info(f"Task Type: {task_type}")
                            logger.info(f"Response Length: {len(generated_text)} characters")
                            logger.info("-" * 40)
                            logger.info("FULL RESPONSE CONTENT:")
                            logger.info("-" * 40)
                            logger.info(generated_text)
                            logger.info("-" * 40)
                            logger.info("END OF LLM RESPONSE")
                            logger.info("=" * 80)
                            return generated_text
                        else:
                            logger.error(f"Unexpected response format: {result}")
                            return None
                    elif response.status_code == 503:
                        # Model is loading - this is retryable
                        if attempt < max_retries:
                            logger.warning(f"Model loading (503), will retry (attempt {attempt + 1}/{max_retries + 1})")
                            last_exception = Exception(f"Model loading (503)")
                            continue
                        else:
                            # After max retries, try fallback model
                            logger.warning(f"Model loading (503) after {max_retries} retries, trying fallback model")
                            fallback_config = self._get_fallback_model(task_type)
                            
                            # FIXED: Ensure task_type is passed in recursive call
                            return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
                    else:
                        # Non-retryable HTTP errors
                        logger.error(f"HF API error: {response.status_code} - {response.text}")
                        return None
                        
                except Timeout as e:
                    last_exception = e
                    if attempt < max_retries:
                        logger.warning(f"Request timeout (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
                        continue
                    else:
                        logger.error(f"Request timeout after {max_retries} retries: {str(e)}")
                        # Try fallback model on final timeout
                        logger.warning("Attempting fallback model due to persistent timeout")
                        fallback_config = self._get_fallback_model(task_type)
                        return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
                        
                except (RequestsConnectionError, RequestException) as e:
                    last_exception = e
                    if attempt < max_retries:
                        logger.warning(f"Connection error (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
                        continue
                    else:
                        logger.error(f"Connection error after {max_retries} retries: {str(e)}")
                        # Try fallback model on final connection error
                        logger.warning("Attempting fallback model due to persistent connection error")
                        fallback_config = self._get_fallback_model(task_type)
                        return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
            
            # If we exhausted all retries and didn't return
            if last_exception:
                logger.error(f"Failed after {max_retries} retries. Last error: {last_exception}")
                return None
                
        except ImportError:
            logger.warning("requests library not available, using mock response")
            return f"[Mock] Response to: {prompt[:100]}..."
        except Exception as e:
            logger.error(f"Error calling HF endpoint: {e}", exc_info=True)
            return None
    
    async def get_available_models(self):
        """
        Get list of available models for testing
        """
        return list(LLM_CONFIG["models"].keys())
    
    async def health_check(self):
        """
        Perform health check on all models
        """
        health_status = {}
        for model_name, model_config in LLM_CONFIG["models"].items():
            model_id = model_config["model_id"]
            is_healthy = await self._is_model_healthy(model_id)
            health_status[model_name] = {
                "model_id": model_id,
                "healthy": is_healthy
            }
        
        return health_status
    
    def prepare_context_for_llm(self, raw_context: Dict, max_tokens: int = 4000) -> str:
        """Smart context windowing for LLM calls"""
        
        try:
            from transformers import AutoTokenizer
            
            # Initialize tokenizer lazily
            if not hasattr(self, 'tokenizer'):
                try:
                    self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
                except GatedRepoError as e:
                    logger.warning(f"Gated repository error loading tokenizer: {e}")
                    logger.warning("Using character count estimation instead")
                    self.tokenizer = None
                except Exception as e:
                    logger.warning(f"Could not load tokenizer: {e}, using character count estimation")
                    self.tokenizer = None
        except ImportError:
            logger.warning("transformers library not available, using character count estimation")
            self.tokenizer = None
        
        # Priority order for context elements
        priority_elements = [
            ('current_query', 1.0),
            ('recent_interactions', 0.8),
            ('user_preferences', 0.6),
            ('session_summary', 0.4),
            ('historical_context', 0.2)
        ]
        
        formatted_context = []
        total_tokens = 0
        
        for element, priority in priority_elements:
            # Map element names to context keys
            element_key_map = {
                'current_query': raw_context.get('user_input', ''),
                'recent_interactions': raw_context.get('interaction_contexts', []),
                'user_preferences': raw_context.get('preferences', {}),
                'session_summary': raw_context.get('session_context', {}),
                'historical_context': raw_context.get('user_context', '')
            }
            
            content = element_key_map.get(element, '')
            
            # Convert to string if needed
            if isinstance(content, dict):
                content = str(content)
            elif isinstance(content, list):
                content = "\n".join([str(item) for item in content[:10]])  # Limit to 10 items
            
            if not content:
                continue
            
            # Estimate tokens
            if self.tokenizer:
                try:
                    tokens = len(self.tokenizer.encode(content))
                except:
                    # Fallback to character-based estimation (rough: 1 token ≈ 4 chars)
                    tokens = len(content) // 4
            else:
                # Character-based estimation (rough: 1 token ≈ 4 chars)
                tokens = len(content) // 4
            
            if total_tokens + tokens <= max_tokens:
                formatted_context.append(f"=== {element.upper()} ===\n{content}")
                total_tokens += tokens
            elif priority > 0.5:  # Critical elements - truncate if needed
                available = max_tokens - total_tokens
                if available > 100:  # Only truncate if we have meaningful space
                    truncated = self._truncate_to_tokens(content, available)
                    formatted_context.append(f"=== {element.upper()} (TRUNCATED) ===\n{truncated}")
                break
        
        return "\n\n".join(formatted_context)
    
    def _truncate_to_tokens(self, content: str, max_tokens: int) -> str:
        """Truncate content to fit within token limit"""
        if not self.tokenizer:
            # Simple character-based truncation
            max_chars = max_tokens * 4
            if len(content) <= max_chars:
                return content
            return content[:max_chars-3] + "..."
        
        try:
            # Tokenize and truncate
            tokens = self.tokenizer.encode(content)
            if len(tokens) <= max_tokens:
                return content
            
            truncated_tokens = tokens[:max_tokens-3]  # Leave room for "..."
            truncated_text = self.tokenizer.decode(truncated_tokens)
            return truncated_text + "..."
        except Exception as e:
            logger.warning(f"Error truncating with tokenizer: {e}, using character truncation")
            max_chars = max_tokens * 4
            if len(content) <= max_chars:
                return content
            return content[:max_chars-3] + "..."