File size: 24,821 Bytes
8f4d405 b3aba24 8f4d405 79ea999 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# llm_router.py - UPDATED FOR LOCAL GPU MODEL LOADING
import logging
import asyncio
from typing import Dict, Optional
from .models_config import LLM_CONFIG
# Import GatedRepoError for handling gated repositories
try:
from huggingface_hub.exceptions import GatedRepoError
except ImportError:
# Fallback if huggingface_hub is not available
GatedRepoError = Exception
logger = logging.getLogger(__name__)
class LLMRouter:
def __init__(self, hf_token, use_local_models: bool = True):
self.hf_token = hf_token
self.health_status = {}
self.use_local_models = use_local_models
self.local_loader = None
logger.info("LLMRouter initialized")
if hf_token:
logger.info("HF token available")
else:
logger.warning("No HF token provided")
# Initialize local model loader if enabled
if self.use_local_models:
try:
from .local_model_loader import LocalModelLoader
self.local_loader = LocalModelLoader()
logger.info("✓ Local model loader initialized (GPU-based inference)")
# Note: Pre-loading will happen on first request (lazy loading)
# Models will be loaded on-demand to avoid blocking startup
logger.info("Models will be loaded on-demand for faster startup")
except Exception as e:
logger.warning(f"Could not initialize local model loader: {e}. Falling back to API.")
logger.warning("This is normal if transformers/torch not available")
self.use_local_models = False
self.local_loader = None
async def route_inference(self, task_type: str, prompt: str, **kwargs):
"""
Smart routing based on task specialization
Tries local models first, falls back to HF Inference API if needed
"""
logger.info(f"Routing inference for task: {task_type}")
model_config = self._select_model(task_type)
logger.info(f"Selected model: {model_config['model_id']}")
# Try local model first if available
if self.use_local_models and self.local_loader:
try:
# Handle embedding generation separately
if task_type == "embedding_generation":
result = await self._call_local_embedding(model_config, prompt, **kwargs)
else:
result = await self._call_local_model(model_config, prompt, task_type, **kwargs)
if result is not None:
logger.info(f"Inference complete for {task_type} (local model)")
return result
else:
logger.warning("Local model returned None, falling back to API")
except Exception as e:
logger.warning(f"Local model inference failed: {e}. Falling back to API.")
logger.debug("Exception details:", exc_info=True)
# Fallback to HF Inference API
logger.info("Using HF Inference API")
# Health check and fallback logic
if not await self._is_model_healthy(model_config["model_id"]):
logger.warning(f"Model unhealthy, using fallback")
model_config = self._get_fallback_model(task_type)
logger.info(f"Fallback model: {model_config['model_id']}")
result = await self._call_hf_endpoint(model_config, prompt, task_type, **kwargs)
logger.info(f"Inference complete for {task_type}")
return result
async def _call_local_model(self, model_config: dict, prompt: str, task_type: str, **kwargs) -> Optional[str]:
"""Call local model for inference."""
if not self.local_loader:
return None
model_id = model_config["model_id"]
max_tokens = kwargs.get('max_tokens', 512)
temperature = kwargs.get('temperature', 0.7)
try:
# Ensure model is loaded
if model_id not in self.local_loader.loaded_models:
logger.info(f"Loading model {model_id} on demand...")
# Check if model config specifies quantization
use_4bit = model_config.get("use_4bit_quantization", False)
use_8bit = model_config.get("use_8bit_quantization", False)
# Fallback to default quantization settings if not specified
if not use_4bit and not use_8bit:
quantization_config = LLM_CONFIG.get("quantization_settings", {})
use_4bit = quantization_config.get("default_4bit", True)
use_8bit = quantization_config.get("default_8bit", False)
try:
self.local_loader.load_chat_model(
model_id,
load_in_8bit=use_8bit,
load_in_4bit=use_4bit
)
except GatedRepoError as e:
logger.error(f"❌ Cannot access gated repository {model_id}")
logger.error(f" Visit https://huggingface.co/{model_id.split(':')[0] if ':' in model_id else model_id} to request access.")
# Try fallback model if available
fallback_model_id = model_config.get("fallback")
if fallback_model_id:
logger.warning(f"Attempting fallback model: {fallback_model_id}")
try:
# Create fallback config
fallback_config = model_config.copy()
fallback_config["model_id"] = fallback_model_id
# Retry with fallback model
return await self._call_local_model(fallback_config, prompt, task_type, **kwargs)
except Exception as fallback_error:
logger.error(f"Fallback model also failed: {fallback_error}")
logger.warning("Falling back to HF Inference API")
return None
else:
logger.warning("No fallback model configured, falling back to HF Inference API")
return None
# Format as chat messages if needed
messages = [{"role": "user", "content": prompt}]
# Generate using local model
result = await asyncio.to_thread(
self.local_loader.generate_chat_completion,
model_id=model_id,
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
logger.info(f"Local model {model_id} generated response (length: {len(result)})")
logger.info("=" * 80)
logger.info("LOCAL MODEL RESPONSE:")
logger.info("=" * 80)
logger.info(f"Model: {model_id}")
logger.info(f"Task Type: {task_type}")
logger.info(f"Response Length: {len(result)} characters")
logger.info("-" * 40)
logger.info("FULL RESPONSE CONTENT:")
logger.info("-" * 40)
logger.info(result)
logger.info("-" * 40)
logger.info("END OF RESPONSE")
logger.info("=" * 80)
return result
except GatedRepoError:
# Already handled above, return None to fall back to API
return None
except Exception as e:
logger.error(f"Error calling local model: {e}", exc_info=True)
return None
async def _call_local_embedding(self, model_config: dict, text: str, **kwargs) -> Optional[list]:
"""Call local embedding model."""
if not self.local_loader:
return None
model_id = model_config["model_id"]
try:
# Ensure model is loaded
if model_id not in self.local_loader.loaded_embedding_models:
logger.info(f"Loading embedding model {model_id} on demand...")
try:
self.local_loader.load_embedding_model(model_id)
except GatedRepoError as e:
logger.error(f"❌ Cannot access gated repository {model_id}")
logger.error(f" Visit https://huggingface.co/{model_id.split(':')[0] if ':' in model_id else model_id} to request access.")
logger.warning("Falling back to HF Inference API")
return None
# Generate embedding
embedding = await asyncio.to_thread(
self.local_loader.get_embedding,
model_id=model_id,
text=text
)
logger.info(f"Local embedding model {model_id} generated vector (dim: {len(embedding)})")
return embedding
except Exception as e:
logger.error(f"Error calling local embedding model: {e}", exc_info=True)
return None
def _select_model(self, task_type: str) -> dict:
model_map = {
"intent_classification": LLM_CONFIG["models"]["classification_specialist"],
"embedding_generation": LLM_CONFIG["models"]["embedding_specialist"],
"safety_check": LLM_CONFIG["models"]["safety_checker"],
"general_reasoning": LLM_CONFIG["models"]["reasoning_primary"],
"response_synthesis": LLM_CONFIG["models"]["reasoning_primary"]
}
return model_map.get(task_type, LLM_CONFIG["models"]["reasoning_primary"])
async def _is_model_healthy(self, model_id: str) -> bool:
"""
Check if the model is healthy and available
Mark models as healthy by default - actual availability checked at API call time
"""
# Check cached health status
if model_id in self.health_status:
return self.health_status[model_id]
# All models marked healthy initially - real check happens during API call
self.health_status[model_id] = True
return True
def _get_fallback_model(self, task_type: str) -> dict:
"""
Get fallback model configuration for the task type
"""
# Fallback mapping
fallback_map = {
"intent_classification": LLM_CONFIG["models"]["reasoning_primary"],
"embedding_generation": LLM_CONFIG["models"]["embedding_specialist"],
"safety_check": LLM_CONFIG["models"]["reasoning_primary"],
"general_reasoning": LLM_CONFIG["models"]["reasoning_primary"],
"response_synthesis": LLM_CONFIG["models"]["reasoning_primary"]
}
return fallback_map.get(task_type, LLM_CONFIG["models"]["reasoning_primary"])
async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
"""
FIXED: Make actual call to Hugging Face Chat Completions API
Uses the correct chat completions protocol with retry logic and exponential backoff
IMPORTANT: task_type parameter is now properly included in the method signature
"""
# Retry configuration
max_retries = kwargs.get('max_retries', 3)
initial_delay = kwargs.get('initial_delay', 1.0) # Start with 1 second
max_delay = kwargs.get('max_delay', 16.0) # Cap at 16 seconds
timeout = kwargs.get('timeout', 30)
try:
import requests
from requests.exceptions import Timeout, RequestException, ConnectionError as RequestsConnectionError
model_id = model_config["model_id"]
# Use the chat completions endpoint
api_url = "/static-proxy?url=https%3A%2F%2Frouter.huggingface.co%2Fv1%2Fchat%2Fcompletions%26quot%3B%3C%2Fspan%3E
logger.info(f"Calling HF Chat Completions API for model: {model_id}")
logger.debug(f"Prompt length: {len(prompt)}")
logger.info("=" * 80)
logger.info("LLM API REQUEST - COMPLETE PROMPT:")
logger.info("=" * 80)
logger.info(f"Model: {model_id}")
# FIXED: task_type is now properly available as a parameter
logger.info(f"Task Type: {task_type}")
logger.info(f"Prompt Length: {len(prompt)} characters")
logger.info("-" * 40)
logger.info("FULL PROMPT CONTENT:")
logger.info("-" * 40)
logger.info(prompt)
logger.info("-" * 40)
logger.info("END OF PROMPT")
logger.info("=" * 80)
# Prepare the request payload
max_tokens = kwargs.get('max_tokens', 512)
temperature = kwargs.get('temperature', 0.7)
payload = {
"model": model_id,
"messages": [
{
"role": "user",
"content": prompt
}
],
"max_tokens": max_tokens,
"temperature": temperature,
"stream": False
}
headers = {
"Authorization": f"Bearer {self.hf_token}",
"Content-Type": "application/json"
}
# Retry logic with exponential backoff
last_exception = None
for attempt in range(max_retries + 1):
try:
if attempt > 0:
# Calculate exponential backoff delay
delay = min(initial_delay * (2 ** (attempt - 1)), max_delay)
logger.warning(f"Retry attempt {attempt}/{max_retries} after {delay:.1f}s delay (exponential backoff)")
await asyncio.sleep(delay)
logger.info(f"Sending request to: {api_url} (attempt {attempt + 1}/{max_retries + 1})")
logger.debug(f"Payload: {payload}")
response = requests.post(api_url, json=payload, headers=headers, timeout=timeout)
if response.status_code == 200:
result = response.json()
logger.debug(f"Raw response: {result}")
if 'choices' in result and len(result['choices']) > 0:
generated_text = result['choices'][0]['message']['content']
if not generated_text or generated_text.strip() == "":
logger.warning(f"Empty or invalid response, using fallback")
return None
if attempt > 0:
logger.info(f"Successfully retrieved response after {attempt} retry attempts")
logger.info(f"HF API returned response (length: {len(generated_text)})")
logger.info("=" * 80)
logger.info("COMPLETE LLM API RESPONSE:")
logger.info("=" * 80)
logger.info(f"Model: {model_id}")
# FIXED: task_type is now properly available
logger.info(f"Task Type: {task_type}")
logger.info(f"Response Length: {len(generated_text)} characters")
logger.info("-" * 40)
logger.info("FULL RESPONSE CONTENT:")
logger.info("-" * 40)
logger.info(generated_text)
logger.info("-" * 40)
logger.info("END OF LLM RESPONSE")
logger.info("=" * 80)
return generated_text
else:
logger.error(f"Unexpected response format: {result}")
return None
elif response.status_code == 503:
# Model is loading - this is retryable
if attempt < max_retries:
logger.warning(f"Model loading (503), will retry (attempt {attempt + 1}/{max_retries + 1})")
last_exception = Exception(f"Model loading (503)")
continue
else:
# After max retries, try fallback model
logger.warning(f"Model loading (503) after {max_retries} retries, trying fallback model")
fallback_config = self._get_fallback_model(task_type)
# FIXED: Ensure task_type is passed in recursive call
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
else:
# Non-retryable HTTP errors
logger.error(f"HF API error: {response.status_code} - {response.text}")
return None
except Timeout as e:
last_exception = e
if attempt < max_retries:
logger.warning(f"Request timeout (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
continue
else:
logger.error(f"Request timeout after {max_retries} retries: {str(e)}")
# Try fallback model on final timeout
logger.warning("Attempting fallback model due to persistent timeout")
fallback_config = self._get_fallback_model(task_type)
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
except (RequestsConnectionError, RequestException) as e:
last_exception = e
if attempt < max_retries:
logger.warning(f"Connection error (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
continue
else:
logger.error(f"Connection error after {max_retries} retries: {str(e)}")
# Try fallback model on final connection error
logger.warning("Attempting fallback model due to persistent connection error")
fallback_config = self._get_fallback_model(task_type)
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
# If we exhausted all retries and didn't return
if last_exception:
logger.error(f"Failed after {max_retries} retries. Last error: {last_exception}")
return None
except ImportError:
logger.warning("requests library not available, using mock response")
return f"[Mock] Response to: {prompt[:100]}..."
except Exception as e:
logger.error(f"Error calling HF endpoint: {e}", exc_info=True)
return None
async def get_available_models(self):
"""
Get list of available models for testing
"""
return list(LLM_CONFIG["models"].keys())
async def health_check(self):
"""
Perform health check on all models
"""
health_status = {}
for model_name, model_config in LLM_CONFIG["models"].items():
model_id = model_config["model_id"]
is_healthy = await self._is_model_healthy(model_id)
health_status[model_name] = {
"model_id": model_id,
"healthy": is_healthy
}
return health_status
def prepare_context_for_llm(self, raw_context: Dict, max_tokens: int = 4000) -> str:
"""Smart context windowing for LLM calls"""
try:
from transformers import AutoTokenizer
# Initialize tokenizer lazily
if not hasattr(self, 'tokenizer'):
try:
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
except GatedRepoError as e:
logger.warning(f"Gated repository error loading tokenizer: {e}")
logger.warning("Using character count estimation instead")
self.tokenizer = None
except Exception as e:
logger.warning(f"Could not load tokenizer: {e}, using character count estimation")
self.tokenizer = None
except ImportError:
logger.warning("transformers library not available, using character count estimation")
self.tokenizer = None
# Priority order for context elements
priority_elements = [
('current_query', 1.0),
('recent_interactions', 0.8),
('user_preferences', 0.6),
('session_summary', 0.4),
('historical_context', 0.2)
]
formatted_context = []
total_tokens = 0
for element, priority in priority_elements:
# Map element names to context keys
element_key_map = {
'current_query': raw_context.get('user_input', ''),
'recent_interactions': raw_context.get('interaction_contexts', []),
'user_preferences': raw_context.get('preferences', {}),
'session_summary': raw_context.get('session_context', {}),
'historical_context': raw_context.get('user_context', '')
}
content = element_key_map.get(element, '')
# Convert to string if needed
if isinstance(content, dict):
content = str(content)
elif isinstance(content, list):
content = "\n".join([str(item) for item in content[:10]]) # Limit to 10 items
if not content:
continue
# Estimate tokens
if self.tokenizer:
try:
tokens = len(self.tokenizer.encode(content))
except:
# Fallback to character-based estimation (rough: 1 token ≈ 4 chars)
tokens = len(content) // 4
else:
# Character-based estimation (rough: 1 token ≈ 4 chars)
tokens = len(content) // 4
if total_tokens + tokens <= max_tokens:
formatted_context.append(f"=== {element.upper()} ===\n{content}")
total_tokens += tokens
elif priority > 0.5: # Critical elements - truncate if needed
available = max_tokens - total_tokens
if available > 100: # Only truncate if we have meaningful space
truncated = self._truncate_to_tokens(content, available)
formatted_context.append(f"=== {element.upper()} (TRUNCATED) ===\n{truncated}")
break
return "\n\n".join(formatted_context)
def _truncate_to_tokens(self, content: str, max_tokens: int) -> str:
"""Truncate content to fit within token limit"""
if not self.tokenizer:
# Simple character-based truncation
max_chars = max_tokens * 4
if len(content) <= max_chars:
return content
return content[:max_chars-3] + "..."
try:
# Tokenize and truncate
tokens = self.tokenizer.encode(content)
if len(tokens) <= max_tokens:
return content
truncated_tokens = tokens[:max_tokens-3] # Leave room for "..."
truncated_text = self.tokenizer.decode(truncated_tokens)
return truncated_text + "..."
except Exception as e:
logger.warning(f"Error truncating with tokenizer: {e}, using character truncation")
max_chars = max_tokens * 4
if len(content) <= max_chars:
return content
return content[:max_chars-3] + "..." |