File size: 14,418 Bytes
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8cddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
3f8cddc
 
 
 
 
 
79ea999
 
 
3f8cddc
 
8f4d405
 
 
 
 
79ea999
8f4d405
 
 
 
 
 
 
 
 
 
 
5787d0a
8f4d405
5787d0a
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
5787d0a
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
8f4d405
79ea999
 
 
 
 
8f4d405
 
79ea999
 
 
 
 
 
8f4d405
 
79ea999
 
 
 
 
 
 
 
8f4d405
79ea999
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5787d0a
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
79ea999
8f4d405
 
 
 
 
 
 
 
79ea999
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
title: AI Research Assistant MVP
emoji: ๐Ÿง 
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false
license: apache-2.0
tags:
- ai
- chatbot
- research
- education
- transformers
models:
- meta-llama/Llama-3.1-8B-Instruct
- intfloat/e5-base-v2
- Qwen/Qwen2.5-1.5B-Instruct
datasets:
- wikipedia
- commoncrawl
base_path: research-assistant
hf_oauth: true
hf_token: true
disable_embedding: false
duplicated_from: null
extra_gated_prompt: null
extra_gated_fields: {}
gated: false
public: true
---

# AI Research Assistant - MVP

<div align="center">

![HF Spaces](https://img.shields.io/badge/๐Ÿค—-Hugging%20Face%20Spaces-blue)
![Python](https://img.shields.io/badge/Python-3.9%2B-green)
![Gradio](https://img.shields.io/badge/Interface-Gradio-FF6B6B)
![NVIDIA T4](https://img.shields.io/badge/GPU-NVIDIA%20T4-blue)

**Academic-grade AI assistant with transparent reasoning and mobile-optimized interface**

[![Demo](https://img.shields.io/badge/๐Ÿš€-Live%20Demo-9cf)](https://huggingface.co/spaces/your-username/research-assistant)
[![Documentation](https://img.shields.io/badge/๐Ÿ“š-Documentation-blue)](https://github.com/your-org/research-assistant/wiki)

</div>

## ๐ŸŽฏ Overview

This MVP demonstrates an intelligent research assistant framework featuring **transparent reasoning chains**, **specialized agent architecture**, and **mobile-first design**. Built for Hugging Face Spaces with NVIDIA T4 GPU acceleration for local model inference.

### Key Differentiators
- **๐Ÿ” Transparent Reasoning**: Watch the AI think step-by-step with Chain of Thought
- **๐Ÿง  Specialized Agents**: Multiple AI models working together for optimal performance  
- **๐Ÿ“ฑ Mobile-First**: Optimized for seamless mobile web experience
- **๐ŸŽ“ Academic Focus**: Designed for research and educational use cases

## ๐Ÿ“š API Documentation

**Comprehensive API documentation is available:** [API_DOCUMENTATION.md](API_DOCUMENTATION.md)

The API provides REST endpoints for:
- Chat interactions with AI assistant
- Health checks
- Context management
- Session tracking

**Quick API Example:**
```python
import requests

response = requests.post(
    "https://huggingface.co/spaces/JatinAutonomousLabs/HonestAI/api/chat",
    json={
        "message": "What is machine learning?",
        "session_id": "my-session",
        "user_id": "user-123"
    }
)
data = response.json()
print(data["message"])
print(f"Performance: {data.get('performance', {})}")
```

## ๐Ÿš€ Quick Start

### Option 1: Use Our Demo
Visit our live demo on Hugging Face Spaces:
```bash
https://huggingface.co/spaces/JatinAutonomousLabs/HonestAI
```

### Option 2: Deploy Your Own Instance

#### Prerequisites
- Hugging Face account with [write token](https://huggingface.co/settings/tokens)
- Basic understanding of Hugging Face Spaces

#### Deployment Steps

1. **Fork this space** using the Hugging Face UI
2. **Add your HF token** (optional, only needed for gated models):
   - Go to your Space โ†’ Settings โ†’ Repository secrets
   - Add `HF_TOKEN` with your Hugging Face token (only needed if using gated models)
   - **Note**: Local models are used for inference - HF_TOKEN is only for downloading models
3. **The space will auto-build** (takes 5-10 minutes)

#### Manual Build (Advanced)

```bash
# Clone the repository
git clone https://huggingface.co/spaces/your-username/research-assistant
cd research-assistant

# Install dependencies
pip install -r requirements.txt

# Set up environment (optional - only needed for gated models)
export HF_TOKEN="your_hugging_face_token_here"  # Optional: only for downloading gated models

# Launch the application (multiple options)
python main.py          # Full integration with error handling
python launch.py        # Simple launcher
python app.py           # UI-only mode
```

## ๐Ÿ“ Integration Structure

The MVP now includes complete integration files for deployment:

```
โ”œโ”€โ”€ main.py                    # ๐ŸŽฏ Main integration entry point
โ”œโ”€โ”€ launch.py                  # ๐Ÿš€ Simple launcher for HF Spaces
โ”œโ”€โ”€ app.py                     # ๐Ÿ“ฑ Mobile-optimized UI
โ”œโ”€โ”€ requirements.txt           # ๐Ÿ“ฆ Dependencies
โ””โ”€โ”€ src/
    โ”œโ”€โ”€ __init__.py           # ๐Ÿ“ฆ Package initialization
    โ”œโ”€โ”€ database.py           # ๐Ÿ—„๏ธ SQLite database management
    โ”œโ”€โ”€ event_handlers.py     # ๐Ÿ”— UI event integration
    โ”œโ”€โ”€ config.py             # โš™๏ธ Configuration
    โ”œโ”€โ”€ llm_router.py         # ๐Ÿค– LLM routing
    โ”œโ”€โ”€ orchestrator_engine.py # ๐ŸŽญ Request orchestration
    โ”œโ”€โ”€ context_manager.py    # ๐Ÿง  Context management
    โ”œโ”€โ”€ mobile_handlers.py    # ๐Ÿ“ฑ Mobile UX handlers
    โ””โ”€โ”€ agents/
        โ”œโ”€โ”€ __init__.py       # ๐Ÿค– Agents package
        โ”œโ”€โ”€ intent_agent.py   # ๐ŸŽฏ Intent recognition
        โ”œโ”€โ”€ synthesis_agent.py # โœจ Response synthesis
        โ””โ”€โ”€ safety_agent.py   # ๐Ÿ›ก๏ธ Safety checking
```

### Key Features:
- **๐Ÿ”„ Graceful Degradation**: Falls back to mock mode if components fail
- **๐Ÿ“ฑ Mobile-First**: Optimized for mobile devices and small screens
- **๐Ÿ—„๏ธ Database Ready**: SQLite integration with session management
- **๐Ÿ”— Event Handling**: Complete UI-to-backend integration
- **โšก Error Recovery**: Robust error handling throughout

## ๐Ÿ—๏ธ Architecture

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Mobile Web    โ”‚ โ”€โ”€ โ”‚   ORCHESTRATOR   โ”‚ โ”€โ”€ โ”‚   AGENT SWARM   โ”‚
โ”‚   Interface     โ”‚    โ”‚   (Core Engine)  โ”‚    โ”‚   (5 Specialists)โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚                        โ”‚                        โ”‚
         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                   โ”‚
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚   PERSISTENCE LAYER         โ”‚
                    โ”‚   (SQLite + FAISS Lite)    โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

### Core Components

| Component | Purpose | Technology |
|-----------|---------|------------|
| **Orchestrator** | Main coordination engine | Python + Async |
| **Intent Recognition** | Understand user goals | RoBERTa-base + CoT |
| **Context Manager** | Session memory & recall | FAISS + SQLite |
| **Response Synthesis** | Generate final answers | Mistral-7B |
| **Safety Checker** | Content moderation | Unbiased-Toxic-RoBERTa |
| **Research Agent** | Information gathering | Web search + analysis |

## ๐Ÿ’ก Usage Examples

### Basic Research Query
```
User: "Explain quantum entanglement in simple terms"

Assistant: 
1. ๐Ÿค” [Reasoning] Breaking down quantum physics concepts...
2. ๐Ÿ” [Research] Gathering latest explanations...
3. โœ๏ธ [Synthesis] Creating simplified explanation...

[Final Response]: Quantum entanglement is when two particles become linked...
```

### Technical Analysis
```
User: "Compare transformer models for text classification"

Assistant:
1. ๐Ÿท๏ธ [Intent] Identifying technical comparison request
2. ๐Ÿ“Š [Analysis] Evaluating BERT vs RoBERTa vs DistilBERT
3. ๐Ÿ“ˆ [Synthesis] Creating comparison table with metrics...
```

## โš™๏ธ Configuration

### Environment Variables

```python
# Required
HF_TOKEN="your_hugging_face_token"

# Optional
MAX_WORKERS=4
CACHE_TTL=3600
DEFAULT_MODEL="meta-llama/Llama-3.1-8B-Instruct"
EMBEDDING_MODEL="intfloat/e5-base-v2"
CLASSIFICATION_MODEL="Qwen/Qwen2.5-1.5B-Instruct"
HF_HOME="/tmp/huggingface"  # Cache directory (auto-configured)
LOG_LEVEL="INFO"
```

**Cache Directory Management:**
- Automatically configured with secure fallback chain
- Supports HF_HOME, TRANSFORMERS_CACHE, or user cache
- Validates write permissions automatically
- See `.env.example` for all available options

### Model Configuration

The system uses multiple specialized models optimized for T4 16GB GPU:

| Task | Model | Purpose | Quantization |
|------|-------|---------|--------------|
| Primary Reasoning | `meta-llama/Llama-3.1-8B-Instruct` | General responses | 4-bit NF4 |
| Embeddings | `intfloat/e5-base-v2` | Semantic search | None (768-dim) |
| Intent Classification | `Qwen/Qwen2.5-1.5B-Instruct` | User goal detection | 4-bit NF4 |
| Safety Checking | `meta-llama/Llama-3.1-8B-Instruct` | Content moderation | 4-bit NF4 |

**Performance Optimizations:**
- โœ… 4-bit quantization (NF4) for memory efficiency
- โœ… Model preloading for faster responses
- โœ… Connection pooling for API calls
- โœ… Parallel agent processing

## ๐Ÿ“ฑ Mobile Optimization

### Key Mobile Features
- **Touch-friendly** interface (44px+ touch targets)
- **Progressive Web App** capabilities
- **Offline functionality** for cached sessions
- **Reduced data usage** with optimized responses
- **Keyboard-aware** layout adjustments

### Supported Devices
- โœ… Smartphones (iOS/Android)
- โœ… Tablets
- โœ… Desktop browsers
- โœ… Screen readers (accessibility)

## ๐Ÿ› ๏ธ Development

### Project Structure
```
research-assistant/
โ”œโ”€โ”€ app.py                 # Main Gradio application
โ”œโ”€โ”€ requirements.txt       # Dependencies
โ”œโ”€โ”€ Dockerfile            # Container configuration
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ orchestrator.py   # Core orchestration engine
โ”‚   โ”œโ”€โ”€ agents/          # Specialized agent modules
โ”‚   โ”œโ”€โ”€ llm_router.py    # Multi-model routing
โ”‚   โ””โ”€โ”€ mobile_ux.py     # Mobile optimizations
โ”œโ”€โ”€ tests/               # Test suites
โ””โ”€โ”€ docs/               # Documentation
```

### Adding New Agents

1. Create agent module in `src/agents/`
2. Implement agent protocol:
```python
class YourNewAgent:
    async def execute(self, user_input: str, context: dict) -> dict:
        # Your agent logic here
        return {
            "result": processed_output,
            "confidence": 0.95,
            "metadata": {}
        }
```

3. Register agent in orchestrator configuration

## ๐Ÿงช Testing

### Run Test Suite
```bash
# Install test dependencies
pip install -r requirements.txt

# Run all tests
pytest tests/ -v

# Run specific test categories
pytest tests/test_agents.py -v
pytest tests/test_mobile_ux.py -v
```

### Test Coverage
- โœ… Agent functionality
- โœ… Mobile UX components  
- โœ… LLM routing logic
- โœ… Error handling
- โœ… Performance benchmarks

## ๐Ÿšจ Troubleshooting

### Common Build Issues

| Issue | Solution |
|-------|----------|
| **HF_TOKEN not found** | Optional - only needed for gated model access |
| **Local models unavailable** | Check transformers/torch installation |
| **Build timeout** | Reduce model sizes in requirements |
| **Memory errors** | Check GPU memory usage, optimize model loading |
| **Import errors** | Check Python version (3.9+) |

### Performance Optimization

1. **Enable caching** in context manager
2. **Use smaller models** for initial deployment
3. **Implement lazy loading** for mobile users
4. **Monitor memory usage** with built-in tools

### Debug Mode

Enable detailed logging:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```

## ๐Ÿ“Š Performance Metrics

The API now includes comprehensive performance metrics in every response:

```json
{
  "performance": {
    "processing_time": 1230.5,      // milliseconds
    "tokens_used": 456,
    "agents_used": 4,
    "confidence_score": 85.2,        // percentage
    "agent_contributions": [
      {"agent": "Intent", "percentage": 25.0},
      {"agent": "Synthesis", "percentage": 40.0},
      {"agent": "Safety", "percentage": 15.0},
      {"agent": "Skills", "percentage": 20.0}
    ],
    "safety_score": 85.0,
    "latency_seconds": 1.230,
    "timestamp": "2024-01-15T10:30:45.123456"
  }
}
```

| Metric | Target | Current |
|--------|---------|---------|
| Response Time | <10s | ~7s |
| Cache Hit Rate | >60% | ~65% |
| Mobile UX Score | >80/100 | 85/100 |
| Error Rate | <5% | ~3% |
| Performance Tracking | โœ… | โœ… Implemented |

## ๐Ÿ”ฎ Roadmap

### Phase 1 (Current - MVP)
- โœ… Basic agent orchestration
- โœ… Mobile-optimized interface  
- โœ… Multi-model routing
- โœ… Transparent reasoning display
- โœ… Performance metrics tracking
- โœ… Enhanced configuration management
- โœ… 4-bit quantization for T4 GPU
- โœ… Model preloading and optimization

### Phase 2 (Next 3 months)
- ๐Ÿšง Advanced research capabilities
- ๐Ÿšง Plugin system for tools
- ๐Ÿšง Enhanced mobile PWA features
- ๐Ÿšง Multi-language support

### Phase 3 (Future)
- ๐Ÿ”ฎ Autonomous agent swarms
- ๐Ÿ”ฎ Voice interface integration
- ๐Ÿ”ฎ Enterprise features
- ๐Ÿ”ฎ Advanced analytics

## ๐Ÿ‘ฅ Contributing

We welcome contributions! Please see:

1. [Contributing Guidelines](docs/CONTRIBUTING.md)
2. [Code of Conduct](docs/CODE_OF_CONDUCT.md)
3. [Development Setup](docs/DEVELOPMENT.md)

### Quick Contribution Steps
```bash
# 1. Fork the repository
# 2. Create feature branch
git checkout -b feature/amazing-feature

# 3. Commit changes
git commit -m "Add amazing feature"

# 4. Push to branch  
git push origin feature/amazing-feature

# 5. Open Pull Request
```

## ๐Ÿ“„ Citation

If you use this framework in your research, please cite:

```bibtex
@software{research_assistant_mvp,
  title = {AI Research Assistant - MVP},
  author = {Your Name},
  year = {2024},
  url = {https://huggingface.co/spaces/your-username/research-assistant}
}
```

## ๐Ÿ“œ License

This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- [Hugging Face](https://huggingface.co) for the infrastructure
- [Gradio](https://gradio.app) for the web framework
- Model contributors from the HF community
- Early testers and feedback providers

---

<div align="center">

**Need help?** 
- [Open an Issue](https://github.com/your-org/research-assistant/issues)
- [Join our Discord](https://discord.gg/your-discord)
- [Email Support](mailto:[email protected])

*Built with โค๏ธ for the research community*

</div>