Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_id = "EssentialAI/rnj-1-instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| def chat(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| output = model.generate( | |
| **inputs, | |
| max_new_tokens=4096, # long output | |
| temperature=0.2, | |
| do_sample=False | |
| ) | |
| return tokenizer.decode(output[0], skip_special_tokens=True) | |
| iface = gr.Interface(fn=chat, inputs="text", outputs="text") | |
| iface.launch() |