Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,30 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
import cv2
|
| 4 |
-
import os, random
|
| 5 |
import numpy as np
|
| 6 |
from transformers import pipeline
|
| 7 |
-
import
|
|
|
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import
|
| 12 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 13 |
from controlnet_aux import OpenposeDetector
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
accelerator = Accelerator(cpu=True)
|
|
|
|
| 16 |
|
| 17 |
models =[
|
| 18 |
"runwayml/stable-diffusion-v1-5",
|
| 19 |
"prompthero/openjourney-v4",
|
| 20 |
"CompVis/stable-diffusion-v1-4",
|
| 21 |
"stabilityai/stable-diffusion-2-1",
|
| 22 |
-
"stablediffusionapi/disney-pixal-cartoon",
|
| 23 |
"stablediffusionapi/edge-of-realism",
|
| 24 |
"MirageML/fantasy-scene",
|
| 25 |
"wavymulder/lomo-diffusion",
|
|
@@ -39,7 +44,6 @@ models =[
|
|
| 39 |
"RayHell/popupBook-diffusion",
|
| 40 |
"MirageML/lowpoly-world",
|
| 41 |
"deadman44/SD_Photoreal_Merged_Models",
|
| 42 |
-
"Conflictx/CGI_Animation",
|
| 43 |
"johnslegers/epic-diffusion",
|
| 44 |
"tilake/China-Chic-illustration",
|
| 45 |
"wavymulder/modelshoot",
|
|
@@ -59,10 +63,8 @@ models =[
|
|
| 59 |
"digiplay/RealismEngine_v1",
|
| 60 |
"digiplay/AIGEN_v1.4_diffusers",
|
| 61 |
"stablediffusionapi/dreamshaper-v6",
|
| 62 |
-
"JackAnon/GorynichMix",
|
| 63 |
"p1atdev/liminal-space-diffusion",
|
| 64 |
"nadanainone/gigaschizonegs",
|
| 65 |
-
"darkVOYAGE/dvMJv4",
|
| 66 |
"lckidwell/album-cover-style",
|
| 67 |
"axolotron/ice-cream-animals",
|
| 68 |
"perion/ai-avatar",
|
|
@@ -77,82 +79,242 @@ models =[
|
|
| 77 |
"Akumetsu971/SD_Samurai_Anime_Model",
|
| 78 |
"Bojaxxx/Fantastic-Mr-Fox-Diffusion",
|
| 79 |
"sd-dreambooth-library/original-character-cyclps",
|
| 80 |
-
##"AIArtsChannel/steampunk-diffusion",
|
| 81 |
]
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
"
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"DPMSolverMultistepScheduler",
|
| 92 |
-
"DPMSolverSDEScheduler",
|
| 93 |
-
"DPMSolverSinglestepScheduler",
|
| 94 |
-
"EulerAncestralDiscreteScheduler",
|
| 95 |
-
"EulerDiscreteScheduler",
|
| 96 |
-
"HeunDiscreteScheduler",
|
| 97 |
-
"IPNDMScheduler",
|
| 98 |
-
"KarrasVeScheduler",
|
| 99 |
-
"KDPM2AncestralDiscreteScheduler",
|
| 100 |
-
"KDPM2DiscreteScheduler",
|
| 101 |
-
"LMSDiscreteScheduler",
|
| 102 |
-
"PNDMScheduler",
|
| 103 |
-
"RePaintScheduler",
|
| 104 |
-
"ScoreSdeVeScheduler",
|
| 105 |
-
"ScoreSdeVpScheduler",
|
| 106 |
-
"VQDiffusionScheduler",
|
| 107 |
-
]
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
def plex(mput,
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(modal_id, use_safetensors=False,torch_dtype=torch.float32, safety_checker=None))
|
| 122 |
-
pope.unet.to(memory_format=torch.channels_last)
|
| 123 |
-
pope = accelerator.prepare(pope.to("cpu"))
|
| 124 |
-
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal_id, use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
|
| 125 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 126 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
| 127 |
-
pipe = accelerator.prepare(pipe.to("cpu"))
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
cannyimage = np.array(tilage)
|
| 132 |
low_threshold = 100
|
| 133 |
high_threshold = 200
|
|
|
|
| 134 |
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
|
|
|
|
| 135 |
zero_start = cannyimage.shape[1] // 4
|
| 136 |
zero_end = zero_start + cannyimage.shape[1] // 2
|
| 137 |
cannyimage[:, zero_start:zero_end] = 0
|
| 138 |
cannyimage = cannyimage[:, :, None]
|
| 139 |
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
|
| 140 |
canny_image = Image.fromarray(cannyimage)
|
| 141 |
-
##canny_image.save('./can.png', 'PNG')
|
| 142 |
pose_image = load_image(mput).resize((512, 512))
|
| 143 |
-
##pose_image.save('./pos.png', 'PNG')
|
| 144 |
openpose_image = openpose(pose_image)
|
| 145 |
-
##openpose_image.save('./fin.png','PNG')
|
| 146 |
images = [openpose_image, canny_image]
|
| 147 |
-
|
| 148 |
-
for i, imge in enumerate(
|
| 149 |
apol.append(imge)
|
|
|
|
| 150 |
apol.append(openpose_image)
|
| 151 |
-
apol.append(
|
| 152 |
apol.append(canny_image)
|
| 153 |
apol.append(tilage)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
return apol
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
iface.queue(max_size=1,api_open=False)
|
| 158 |
-
iface.launch(max_threads=
|
|
|
|
| 1 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline
|
| 2 |
+
import torch
|
| 3 |
import cv2
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from transformers import pipeline
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
+
import os, random, gc, re, json, time, shutil, glob
|
| 10 |
+
import PIL.Image
|
| 11 |
+
import tqdm
|
|
|
|
| 12 |
from controlnet_aux import OpenposeDetector
|
| 13 |
+
from accelerate import Accelerator
|
| 14 |
+
from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
|
| 15 |
+
HfApi=HfApi()
|
| 16 |
+
HF_TOKEN=os.getenv("HF_TOKEN")
|
| 17 |
+
HF_HUB_DISABLE_TELEMETRY=1
|
| 18 |
+
DO_NOT_TRACK=1
|
| 19 |
+
HF_HUB_ENABLE_HF_TRANSFER=0
|
| 20 |
accelerator = Accelerator(cpu=True)
|
| 21 |
+
InferenceClient=InferenceClient()
|
| 22 |
|
| 23 |
models =[
|
| 24 |
"runwayml/stable-diffusion-v1-5",
|
| 25 |
"prompthero/openjourney-v4",
|
| 26 |
"CompVis/stable-diffusion-v1-4",
|
| 27 |
"stabilityai/stable-diffusion-2-1",
|
|
|
|
| 28 |
"stablediffusionapi/edge-of-realism",
|
| 29 |
"MirageML/fantasy-scene",
|
| 30 |
"wavymulder/lomo-diffusion",
|
|
|
|
| 44 |
"RayHell/popupBook-diffusion",
|
| 45 |
"MirageML/lowpoly-world",
|
| 46 |
"deadman44/SD_Photoreal_Merged_Models",
|
|
|
|
| 47 |
"johnslegers/epic-diffusion",
|
| 48 |
"tilake/China-Chic-illustration",
|
| 49 |
"wavymulder/modelshoot",
|
|
|
|
| 63 |
"digiplay/RealismEngine_v1",
|
| 64 |
"digiplay/AIGEN_v1.4_diffusers",
|
| 65 |
"stablediffusionapi/dreamshaper-v6",
|
|
|
|
| 66 |
"p1atdev/liminal-space-diffusion",
|
| 67 |
"nadanainone/gigaschizonegs",
|
|
|
|
| 68 |
"lckidwell/album-cover-style",
|
| 69 |
"axolotron/ice-cream-animals",
|
| 70 |
"perion/ai-avatar",
|
|
|
|
| 79 |
"Akumetsu971/SD_Samurai_Anime_Model",
|
| 80 |
"Bojaxxx/Fantastic-Mr-Fox-Diffusion",
|
| 81 |
"sd-dreambooth-library/original-character-cyclps",
|
|
|
|
| 82 |
]
|
| 83 |
+
loris=[]
|
| 84 |
+
apol=[]
|
| 85 |
|
| 86 |
+
def smdls(models):
|
| 87 |
+
models=models
|
| 88 |
+
mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,)
|
| 89 |
+
if mtlst:
|
| 90 |
+
for nea in mtlst:
|
| 91 |
+
vmh=""+str(nea.id)+""
|
| 92 |
+
models.append(vmh)
|
| 93 |
+
return models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
def sldls(loris):
|
| 96 |
+
loris=loris
|
| 97 |
+
ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,)
|
| 98 |
+
if ltlst:
|
| 99 |
+
for noa in ltlst:
|
| 100 |
+
lmh=""+str(noa.id)+""
|
| 101 |
+
loris.append(lmh)
|
| 102 |
+
return loris
|
| 103 |
+
|
| 104 |
+
def chdr(apol,prompt,modil,los,stips,fnamo,gaul):
|
| 105 |
+
try:
|
| 106 |
+
type="SD_controlnet"
|
| 107 |
+
tre='./tmpo/'+fnamo+'.json'
|
| 108 |
+
tra='./tmpo/'+fnamo+'_0.png'
|
| 109 |
+
trm='./tmpo/'+fnamo+'_1.png'
|
| 110 |
+
trv='./tmpo/'+fnamo+'_pose.png'
|
| 111 |
+
trh='./tmpo/'+fnamo+'_canny.png'
|
| 112 |
+
trg='./tmpo/'+fnamo+'_cann_im.png'
|
| 113 |
+
trq='./tmpo/'+fnamo+'_tilage.png'
|
| 114 |
+
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
|
| 115 |
+
flng=[itm[::-1] for itm in flng]
|
| 116 |
+
ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
|
| 117 |
+
if re.search(ptn, prompt, re.IGNORECASE):
|
| 118 |
+
print("onon buddy")
|
| 119 |
+
else:
|
| 120 |
+
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
|
| 121 |
+
with open(tre, 'w') as f:
|
| 122 |
+
json.dump(dobj, f)
|
| 123 |
+
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
|
| 124 |
+
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
|
| 125 |
+
with open(tre, 'w') as f:
|
| 126 |
+
json.dump(dobj, f)
|
| 127 |
+
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
|
| 128 |
+
try:
|
| 129 |
+
for pgn in glob.glob('./tmpo/*.png'):
|
| 130 |
+
os.remove(pgn)
|
| 131 |
+
for jgn in glob.glob('./tmpo/*.json'):
|
| 132 |
+
os.remove(jgn)
|
| 133 |
+
del tre
|
| 134 |
+
del tra
|
| 135 |
+
del trm
|
| 136 |
+
del trv
|
| 137 |
+
del trh
|
| 138 |
+
del trg
|
| 139 |
+
del trq
|
| 140 |
+
except:
|
| 141 |
+
print("cant")
|
| 142 |
+
except:
|
| 143 |
+
print("failed to umake obj")
|
| 144 |
+
|
| 145 |
+
def crll(dnk):
|
| 146 |
+
lix=""
|
| 147 |
+
lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model")
|
| 148 |
+
for flre in list(lotr):
|
| 149 |
+
fllr=[]
|
| 150 |
+
gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path)
|
| 151 |
+
yir=re.search(r'[^/]+$', flre.path)
|
| 152 |
+
if gar:
|
| 153 |
+
fllr.append(""+str(yir.group(0))+"")
|
| 154 |
+
lix=""+fllr[-1]+""
|
| 155 |
+
else:
|
| 156 |
+
lix=""
|
| 157 |
+
return lix
|
| 158 |
|
| 159 |
+
def plax(gaul,req: gr.Request):
|
| 160 |
+
gaul=str(req.headers)
|
| 161 |
+
return gaul
|
| 162 |
|
| 163 |
+
def plex(prompt,mput,neg_prompt,modil,stips,scaly,csal,csbl,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)):
|
| 164 |
+
gc.collect()
|
| 165 |
+
adi=""
|
| 166 |
+
ldi=""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 169 |
+
controlnet = [
|
| 170 |
+
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float32),
|
| 171 |
+
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32),
|
| 172 |
+
]
|
| 173 |
+
try:
|
| 174 |
+
crda=ModelCard.load(""+modil+"")
|
| 175 |
+
card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt")
|
| 176 |
+
cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt")
|
| 177 |
+
cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt")
|
| 178 |
+
mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE)
|
| 179 |
+
moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE)
|
| 180 |
+
if moch:
|
| 181 |
+
adi+=""+str(moch.group(1))+", "
|
| 182 |
+
else:
|
| 183 |
+
print("no floff trigger")
|
| 184 |
+
if mtch:
|
| 185 |
+
adi+=""+str(mtch.group(1))+", "
|
| 186 |
+
else:
|
| 187 |
+
print("no fluff trigger")
|
| 188 |
+
if card:
|
| 189 |
+
adi+=""+str(card)+", "
|
| 190 |
+
else:
|
| 191 |
+
print("no instance")
|
| 192 |
+
if cerd:
|
| 193 |
+
adi+=""+str(cerd)+", "
|
| 194 |
+
else:
|
| 195 |
+
print("no custom")
|
| 196 |
+
if cird:
|
| 197 |
+
adi+=""+str(cird)+", "
|
| 198 |
+
else:
|
| 199 |
+
print("no lora")
|
| 200 |
+
except:
|
| 201 |
+
print("no card")
|
| 202 |
+
try:
|
| 203 |
+
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=False,torch_dtype=torch.float32, safety_checker=None))
|
| 204 |
+
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
|
| 205 |
+
except:
|
| 206 |
+
gc.collect()
|
| 207 |
+
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=True,torch_dtype=torch.float32, safety_checker=None))
|
| 208 |
+
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=True,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
|
| 209 |
+
if los:
|
| 210 |
+
try:
|
| 211 |
+
lrda=ModelCard.load(""+los+"")
|
| 212 |
+
lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt")
|
| 213 |
+
lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt")
|
| 214 |
+
lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion")
|
| 215 |
+
ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE)
|
| 216 |
+
loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE)
|
| 217 |
+
if loch and lird:
|
| 218 |
+
ldi+=""+str(loch.group(1))+", "
|
| 219 |
+
else:
|
| 220 |
+
print("no lloff trigger")
|
| 221 |
+
if ltch and lird:
|
| 222 |
+
ldi+=""+str(ltch.group(1))+", "
|
| 223 |
+
else:
|
| 224 |
+
print("no lluff trigger")
|
| 225 |
+
if lard and lird:
|
| 226 |
+
ldi+=""+str(lard)+", "
|
| 227 |
+
else:
|
| 228 |
+
print("no instance")
|
| 229 |
+
ldi+=""
|
| 230 |
+
if lerd and lird:
|
| 231 |
+
ldi+=""+str(lerd)+", "
|
| 232 |
+
else:
|
| 233 |
+
print("no custom")
|
| 234 |
+
ldi+=""
|
| 235 |
+
except:
|
| 236 |
+
print("no trigger")
|
| 237 |
+
try:
|
| 238 |
+
pope.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",)
|
| 239 |
+
pope.fuse_lora(fuse_unet=True,fuse_text_encoder=False)
|
| 240 |
+
except:
|
| 241 |
+
print("no can do")
|
| 242 |
+
else:
|
| 243 |
+
los=""
|
| 244 |
+
pope.unet.to(memory_format=torch.channels_last)
|
| 245 |
+
pope = accelerator.prepare(pope.to("cpu"))
|
| 246 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
| 247 |
+
pipe = accelerator.prepare(pipe.to("cpu"))
|
| 248 |
+
gc.collect()
|
| 249 |
+
apol=[]
|
| 250 |
+
height=hei
|
| 251 |
+
width=wei
|
| 252 |
+
prompt=""+str(adi)+""+str(ldi)+""+prompt+""
|
| 253 |
+
negative_prompt=""+neg_prompt+""
|
| 254 |
+
lora_scale=loca
|
| 255 |
+
if nut == 0:
|
| 256 |
+
nm = random.randint(1, 2147483616)
|
| 257 |
+
while nm % 32 != 0:
|
| 258 |
+
nm = random.randint(1, 2147483616)
|
| 259 |
+
else:
|
| 260 |
+
nm=nut
|
| 261 |
+
generator = torch.Generator(device="cpu").manual_seed(nm)
|
| 262 |
+
tilage = pope(prompt,num_inference_steps=5,height=height,width=width,generator=generator,cross_attention_kwargs={"scale": lora_scale}).images[0]
|
| 263 |
cannyimage = np.array(tilage)
|
| 264 |
low_threshold = 100
|
| 265 |
high_threshold = 200
|
| 266 |
+
fnamo=""+str(int(time.time()))+""
|
| 267 |
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
|
| 268 |
+
cammyimage=Image.fromarray(cannyimage).save('./tmpo/'+fnamo+'_canny.png', 'PNG')
|
| 269 |
zero_start = cannyimage.shape[1] // 4
|
| 270 |
zero_end = zero_start + cannyimage.shape[1] // 2
|
| 271 |
cannyimage[:, zero_start:zero_end] = 0
|
| 272 |
cannyimage = cannyimage[:, :, None]
|
| 273 |
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
|
| 274 |
canny_image = Image.fromarray(cannyimage)
|
|
|
|
| 275 |
pose_image = load_image(mput).resize((512, 512))
|
|
|
|
| 276 |
openpose_image = openpose(pose_image)
|
|
|
|
| 277 |
images = [openpose_image, canny_image]
|
| 278 |
+
omage=pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[csal, csbl])
|
| 279 |
+
for i, imge in enumerate(omage["images"]):
|
| 280 |
apol.append(imge)
|
| 281 |
+
imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG')
|
| 282 |
apol.append(openpose_image)
|
| 283 |
+
apol.append(cammyimage)
|
| 284 |
apol.append(canny_image)
|
| 285 |
apol.append(tilage)
|
| 286 |
+
openpose_image.save('./tmpo/'+fnamo+'_pose.png', 'PNG')
|
| 287 |
+
canny_image.save('./tmpo/'+fnamo+'_cann_im.png', 'PNG')
|
| 288 |
+
tilage.save('./tmpo/'+fnamo+'_tilage.png', 'PNG')
|
| 289 |
+
chdr(apol,prompt,modil,los,stips,fnamo,gaul)
|
| 290 |
return apol
|
| 291 |
|
| 292 |
+
def aip(ill,api_name="/run"):
|
| 293 |
+
return
|
| 294 |
+
def pit(ill,api_name="/predict"):
|
| 295 |
+
return
|
| 296 |
+
|
| 297 |
+
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
|
| 298 |
+
##iface.description="Running on cpu, very slow! by JoPmt."
|
| 299 |
+
out=gr.Gallery(label="Generated Output Image", columns=1)
|
| 300 |
+
inut=gr.Textbox(label="Prompt")
|
| 301 |
+
mput=gr.Image(type="filepath")
|
| 302 |
+
gaul=gr.Textbox(visible=False)
|
| 303 |
+
inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value")
|
| 304 |
+
btn=gr.Button("GENERATE")
|
| 305 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 306 |
+
inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value")
|
| 307 |
+
inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,")
|
| 308 |
+
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
|
| 309 |
+
inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7)
|
| 310 |
+
csal=gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1)
|
| 311 |
+
csbl=gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1)
|
| 312 |
+
loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5)
|
| 313 |
+
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
|
| 314 |
+
inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512)
|
| 315 |
+
inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512)
|
| 316 |
+
|
| 317 |
+
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inot,inyt,inat,csal,csbl,indt,inwt,inht,inlt,loca,gaul])
|
| 318 |
+
|
| 319 |
iface.queue(max_size=1,api_open=False)
|
| 320 |
+
iface.launch(max_threads=20,inline=False,show_api=False)
|