Spaces:
Runtime error
Runtime error
switch to distilled
Browse files
app.py
CHANGED
|
@@ -15,10 +15,13 @@ import mediapipe as mp
|
|
| 15 |
from PIL import Image
|
| 16 |
import cv2
|
| 17 |
|
|
|
|
| 18 |
dtype = torch.bfloat16
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
-
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
|
|
|
|
|
|
|
| 22 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
|
| 23 |
pipeline.to(device)
|
| 24 |
pipe_upsample.to(device)
|
|
@@ -197,12 +200,8 @@ def generate_video(
|
|
| 197 |
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
|
| 198 |
height=768,
|
| 199 |
width=1152,
|
| 200 |
-
num_inference_steps=
|
| 201 |
-
guidance_scale=
|
| 202 |
-
guidance_rescale=0.7,
|
| 203 |
-
decode_timestep=0.05,
|
| 204 |
-
decode_noise_scale=0.025,
|
| 205 |
-
image_cond_noise_scale=0.0,
|
| 206 |
seed=0,
|
| 207 |
randomize_seed=False,
|
| 208 |
progress=gr.Progress()
|
|
@@ -263,11 +262,11 @@ def generate_video(
|
|
| 263 |
height=downscaled_height,
|
| 264 |
num_frames=num_frames,
|
| 265 |
num_inference_steps=num_inference_steps,
|
| 266 |
-
decode_timestep=
|
| 267 |
-
decode_noise_scale=
|
| 268 |
-
image_cond_noise_scale=image_cond_noise_scale,
|
| 269 |
guidance_scale=guidance_scale,
|
| 270 |
-
guidance_rescale=guidance_rescale,
|
| 271 |
generator=torch.Generator().manual_seed(seed),
|
| 272 |
output_type="latent",
|
| 273 |
).frames
|
|
@@ -293,11 +292,11 @@ def generate_video(
|
|
| 293 |
denoise_strength=0.4,
|
| 294 |
num_inference_steps=10,
|
| 295 |
latents=upscaled_latents,
|
| 296 |
-
decode_timestep=
|
| 297 |
-
decode_noise_scale=decode_noise_scale,
|
| 298 |
-
image_cond_noise_scale=image_cond_noise_scale,
|
| 299 |
guidance_scale=guidance_scale,
|
| 300 |
-
|
|
|
|
|
|
|
| 301 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
| 302 |
output_type="pil",
|
| 303 |
).frames[0]
|
|
@@ -392,7 +391,7 @@ with gr.Blocks() as demo:
|
|
| 392 |
minimum=10,
|
| 393 |
maximum=50,
|
| 394 |
step=1,
|
| 395 |
-
value=
|
| 396 |
)
|
| 397 |
|
| 398 |
with gr.Row():
|
|
@@ -401,43 +400,10 @@ with gr.Blocks() as demo:
|
|
| 401 |
minimum=1.0,
|
| 402 |
maximum=15.0,
|
| 403 |
step=0.1,
|
| 404 |
-
value=
|
| 405 |
-
)
|
| 406 |
-
guidance_rescale = gr.Slider(
|
| 407 |
-
label="Guidance Rescale",
|
| 408 |
-
minimum=0.0,
|
| 409 |
-
maximum=1.0,
|
| 410 |
-
step=0.05,
|
| 411 |
-
value=0.7,
|
| 412 |
-
visible=False
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
with gr.Row():
|
| 416 |
-
decode_timestep = gr.Slider(
|
| 417 |
-
label="Decode Timestep",
|
| 418 |
-
minimum=0.0,
|
| 419 |
-
maximum=1.0,
|
| 420 |
-
step=0.01,
|
| 421 |
-
value=0.05,
|
| 422 |
-
visible=False
|
| 423 |
-
)
|
| 424 |
-
decode_noise_scale = gr.Slider(
|
| 425 |
-
label="Decode Noise Scale",
|
| 426 |
-
minimum=0.0,
|
| 427 |
-
maximum=0.1,
|
| 428 |
-
step=0.005,
|
| 429 |
-
value=0.025,
|
| 430 |
-
visible=False
|
| 431 |
)
|
|
|
|
| 432 |
|
| 433 |
-
image_cond_noise_scale = gr.Slider(
|
| 434 |
-
label="Image Condition Noise Scale",
|
| 435 |
-
minimum=0.0,
|
| 436 |
-
maximum=0.5,
|
| 437 |
-
step=0.01,
|
| 438 |
-
value=0.0,
|
| 439 |
-
visible=False
|
| 440 |
-
)
|
| 441 |
|
| 442 |
with gr.Row():
|
| 443 |
randomize_seed = gr.Checkbox(
|
|
@@ -482,10 +448,6 @@ with gr.Blocks() as demo:
|
|
| 482 |
width,
|
| 483 |
num_inference_steps,
|
| 484 |
guidance_scale,
|
| 485 |
-
guidance_rescale,
|
| 486 |
-
decode_timestep,
|
| 487 |
-
decode_noise_scale,
|
| 488 |
-
image_cond_noise_scale,
|
| 489 |
seed,
|
| 490 |
randomize_seed
|
| 491 |
],
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
import cv2
|
| 17 |
|
| 18 |
+
|
| 19 |
dtype = torch.bfloat16
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
|
| 22 |
+
#pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
|
| 23 |
+
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
|
| 24 |
+
|
| 25 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
|
| 26 |
pipeline.to(device)
|
| 27 |
pipe_upsample.to(device)
|
|
|
|
| 200 |
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
|
| 201 |
height=768,
|
| 202 |
width=1152,
|
| 203 |
+
num_inference_steps=7,
|
| 204 |
+
guidance_scale=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
seed=0,
|
| 206 |
randomize_seed=False,
|
| 207 |
progress=gr.Progress()
|
|
|
|
| 262 |
height=downscaled_height,
|
| 263 |
num_frames=num_frames,
|
| 264 |
num_inference_steps=num_inference_steps,
|
| 265 |
+
decode_timestep=0.05,
|
| 266 |
+
decode_noise_scale=0.025,
|
| 267 |
+
# image_cond_noise_scale=image_cond_noise_scale,
|
| 268 |
guidance_scale=guidance_scale,
|
| 269 |
+
# guidance_rescale=guidance_rescale,
|
| 270 |
generator=torch.Generator().manual_seed(seed),
|
| 271 |
output_type="latent",
|
| 272 |
).frames
|
|
|
|
| 292 |
denoise_strength=0.4,
|
| 293 |
num_inference_steps=10,
|
| 294 |
latents=upscaled_latents,
|
| 295 |
+
decode_timestep = 0.05,
|
|
|
|
|
|
|
| 296 |
guidance_scale=guidance_scale,
|
| 297 |
+
decode_noise_scale = 0.025,
|
| 298 |
+
image_cond_noise_scale=0.025,
|
| 299 |
+
#guidance_rescale=guidance_rescale,
|
| 300 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
| 301 |
output_type="pil",
|
| 302 |
).frames[0]
|
|
|
|
| 391 |
minimum=10,
|
| 392 |
maximum=50,
|
| 393 |
step=1,
|
| 394 |
+
value=7
|
| 395 |
)
|
| 396 |
|
| 397 |
with gr.Row():
|
|
|
|
| 400 |
minimum=1.0,
|
| 401 |
maximum=15.0,
|
| 402 |
step=0.1,
|
| 403 |
+
value=1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
)
|
| 405 |
+
|
| 406 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
|
| 408 |
with gr.Row():
|
| 409 |
randomize_seed = gr.Checkbox(
|
|
|
|
| 448 |
width,
|
| 449 |
num_inference_steps,
|
| 450 |
guidance_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
seed,
|
| 452 |
randomize_seed
|
| 453 |
],
|