Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if torch.cuda.is_available(): | |
| torch.cuda.max_memory_allocated(device=device) | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe = pipe.to(device) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| generator = generator | |
| ).images[0] | |
| return image | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| html_content = """ | |
| <p id="sourceText" style="width: 400px; padding: 10px; border: 1px solid #000;" onmouseup="selectText()"> | |
| 这是一个可拖动文本的示例。选择这段话中的部分文字并拖动到下方的文本框中作为标签。 | |
| </p> | |
| <div id="dropzone" ondrop="drop(event)" ondragover="allowDrop(event)" style="width: 400px; height: 200px; border: 1px solid #000; margin-top: 20px;"> | |
| 将选中的文字拖动到这里 | |
| </div> | |
| <script> | |
| let selectedText = ''; | |
| function selectText() { | |
| const selection = window.getSelection(); | |
| selectedText = selection.toString(); | |
| if (selectedText) { | |
| const span = document.createElement('span'); | |
| span.textContent = selectedText; | |
| span.setAttribute('draggable', true); | |
| span.setAttribute('ondragstart', 'drag(event)'); | |
| selection.removeAllRanges(); | |
| selection.anchorNode.parentElement.insertBefore(span, selection.anchorNode.nextSibling); | |
| } | |
| } | |
| function allowDrop(event) { | |
| event.preventDefault(); | |
| } | |
| function drag(event) { | |
| event.dataTransfer.setData("text/plain", event.target.textContent); | |
| } | |
| function drop(event) { | |
| event.preventDefault(); | |
| const data = event.dataTransfer.getData("text/plain"); | |
| const tag = document.createElement('div'); | |
| tag.textContent = data; | |
| tag.style.border = '1px solid #000'; | |
| tag.style.padding = '5px'; | |
| tag.style.margin = '5px'; | |
| event.target.appendChild(tag); | |
| } | |
| </script> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image Gradio Template | |
| Currently running on {power_device}. | |
| """) | |
| gr.HTML(html_content) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=2, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs = [result] | |
| ) | |
| # 自定义HTML和JavaScript | |
| demo.queue().launch() |