Spaces:
Running
Running
Commit
·
3d25956
1
Parent(s):
5cac97d
docs: add SPEC_07 LangGraph Memory Architecture + update bug docs
Browse filesNEW DOCS:
- SPEC_07_LANGGRAPH_MEMORY_ARCH.md: Ironclad spec for structured
cognitive memory using LangGraph (Nov 2025 best practices)
- P3_ARCHITECTURAL_GAP_STRUCTURED_MEMORY.md: Bug report documenting
missing hypothesis/conflict tracking in AdvancedOrchestrator
Based on deep codebase audit and web search (Nov 2025):
- LangGraph chosen over Mem0 for orchestration (Mem0 better for personalization)
- Works with HuggingFace Inference API (Llama 3.1) - no OpenAI required
- Includes SQLite checkpointer for dev, MongoDB for prod
UPDATED:
- ACTIVE_BUGS.md: Added P3 architecture gaps, marked P0 Simple Mode as FIXED
docs/bugs/ACTIVE_BUGS.md
CHANGED
|
@@ -4,29 +4,40 @@
|
|
| 4 |
|
| 5 |
## P0 - Blocker
|
| 6 |
|
| 7 |
-
|
| 8 |
-
**File:** `P0_SIMPLE_MODE_NEVER_SYNTHESIZES.md`
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
-
1. Judge never recommends "synthesize" (prompt too conservative)
|
| 14 |
-
2. Confidence drops to 0% in late iterations (context overflow / API failure)
|
| 15 |
-
3. Search derails to tangential topics (bone health instead of libido)
|
| 16 |
-
4. `_generate_partial_synthesis()` outputs garbage (just citations, no analysis)
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
---
|
| 27 |
|
| 28 |
## Resolved Bugs
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
### ~~P3 - Magentic Mode Missing Termination Guarantee~~ FIXED
|
| 31 |
**Commit**: `d36ce3c` (2025-11-29)
|
| 32 |
|
|
|
|
| 4 |
|
| 5 |
## P0 - Blocker
|
| 6 |
|
| 7 |
+
*(None - P0 bugs resolved)*
|
|
|
|
| 8 |
|
| 9 |
+
---
|
| 10 |
|
| 11 |
+
## P3 - Architecture/Enhancement
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
### P3 - Missing Structured Cognitive Memory
|
| 14 |
+
**File:** `P3_ARCHITECTURAL_GAP_STRUCTURED_MEMORY.md`
|
| 15 |
+
**Spec:** [SPEC_07_LANGGRAPH_MEMORY_ARCH.md](../specs/SPEC_07_LANGGRAPH_MEMORY_ARCH.md)
|
| 16 |
|
| 17 |
+
**Problem:** AdvancedOrchestrator uses chat-based state (context drift on long runs).
|
| 18 |
+
**Solution:** Implement LangGraph StateGraph with explicit hypothesis/conflict tracking.
|
| 19 |
+
**Status:** Spec complete, implementation pending.
|
| 20 |
|
| 21 |
+
### P3 - Ephemeral Memory (No Persistence)
|
| 22 |
+
**File:** `P3_ARCHITECTURAL_GAP_EPHEMERAL_MEMORY.md`
|
| 23 |
|
| 24 |
+
**Problem:** ChromaDB uses in-memory client despite `settings.chroma_db_path` existing.
|
| 25 |
+
**Solution:** Switch to `PersistentClient(path=settings.chroma_db_path)`.
|
| 26 |
+
**Status:** Quick fix identified, not yet implemented.
|
| 27 |
|
| 28 |
---
|
| 29 |
|
| 30 |
## Resolved Bugs
|
| 31 |
|
| 32 |
+
### ~~P0 - Simple Mode Never Synthesizes~~ FIXED
|
| 33 |
+
**PR:** [#71](https://github.com/The-Obstacle-Is-The-Way/DeepBoner/pull/71) (SPEC_06)
|
| 34 |
+
**Commit**: `5cac97d` (2025-11-29)
|
| 35 |
+
|
| 36 |
+
- Root cause: LLM-as-Judge recommendations were being IGNORED
|
| 37 |
+
- Fix: Code-enforced termination criteria (`_should_synthesize()`)
|
| 38 |
+
- Added combined score thresholds, late-iteration logic, emergency fallback
|
| 39 |
+
- Simple mode now synthesizes instead of spinning forever
|
| 40 |
+
|
| 41 |
### ~~P3 - Magentic Mode Missing Termination Guarantee~~ FIXED
|
| 42 |
**Commit**: `d36ce3c` (2025-11-29)
|
| 43 |
|
docs/bugs/P3_ARCHITECTURAL_GAP_STRUCTURED_MEMORY.md
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# P3: Missing Structured Cognitive Memory (Shared Blackboard)
|
| 2 |
+
|
| 3 |
+
**Status:** OPEN
|
| 4 |
+
**Priority:** P3 (Architecture/Enhancement)
|
| 5 |
+
**Found By:** Deep Codebase Investigation
|
| 6 |
+
**Date:** 2025-11-29
|
| 7 |
+
**Spec:** [SPEC_07_LANGGRAPH_MEMORY_ARCH.md](../specs/SPEC_07_LANGGRAPH_MEMORY_ARCH.md)
|
| 8 |
+
|
| 9 |
+
## Executive Summary
|
| 10 |
+
|
| 11 |
+
DeepBoner's `AdvancedOrchestrator` has **Data Memory** (vector store for papers) but lacks **Cognitive Memory** (structured state for hypotheses, conflicts, and research plan). This causes "context drift" on long runs and prevents intelligent conflict resolution.
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## Current Architecture (What We Have)
|
| 16 |
+
|
| 17 |
+
### 1. MagenticState (`src/agents/state.py:18-91`)
|
| 18 |
+
```python
|
| 19 |
+
class MagenticState(BaseModel):
|
| 20 |
+
evidence: list[Evidence] = Field(default_factory=list)
|
| 21 |
+
embedding_service: Any = None # ChromaDB connection
|
| 22 |
+
|
| 23 |
+
def add_evidence(self, new_evidence: list[Evidence]) -> int: ...
|
| 24 |
+
async def search_related(self, query: str, n_results: int = 5) -> list[Evidence]: ...
|
| 25 |
+
```
|
| 26 |
+
- **What it does:** Stores Evidence objects, URL-based deduplication, semantic search via embeddings.
|
| 27 |
+
- **What it DOESN'T do:** Track hypotheses, conflicts, or research plan status.
|
| 28 |
+
|
| 29 |
+
### 2. EmbeddingService (`src/services/embeddings.py:29-180`)
|
| 30 |
+
```python
|
| 31 |
+
self._client = chromadb.Client() # In-memory (Line 44)
|
| 32 |
+
self._collection = self._client.create_collection(
|
| 33 |
+
name=f"evidence_{uuid.uuid4().hex}", # Random name per session (Line 45-47)
|
| 34 |
+
...
|
| 35 |
+
)
|
| 36 |
+
```
|
| 37 |
+
- **What it does:** In-session semantic search/deduplication.
|
| 38 |
+
- **Limitation:** New collection per session, no persistence despite `settings.chroma_db_path` existing.
|
| 39 |
+
|
| 40 |
+
### 3. AdvancedOrchestrator (`src/orchestrators/advanced.py:51-371`)
|
| 41 |
+
- Uses Microsoft's `agent-framework-core` (MagenticBuilder)
|
| 42 |
+
- State is implicit in chat history passed between agents
|
| 43 |
+
- Manager decides next step by reading conversation, not structured state
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## The Problem
|
| 48 |
+
|
| 49 |
+
| Issue | Impact | Evidence |
|
| 50 |
+
|-------|--------|----------|
|
| 51 |
+
| **No Hypothesis Tracking** | Can't update hypothesis confidence systematically | `MagenticState` has no `hypotheses` field |
|
| 52 |
+
| **No Conflict Detection** | Contradictory sources are ignored | No `conflicts` list to flag Source A vs Source B |
|
| 53 |
+
| **Context Drift** | Manager forgets original query after 50+ messages | State lives only in chat, not structured object |
|
| 54 |
+
| **No Plan State** | Can't pause/resume research | No `research_plan` or `next_step` tracking |
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## The Solution: LangGraph State Graph (Nov 2025 Best Practice)
|
| 59 |
+
|
| 60 |
+
### Why LangGraph?
|
| 61 |
+
|
| 62 |
+
Based on [comprehensive analysis](https://latenode.com/blog/langgraph-multi-agent-orchestration-complete-framework-guide-architecture-analysis-2025):
|
| 63 |
+
|
| 64 |
+
1. **Explicit State Schema:** TypedDict/Pydantic model that ALL agents read/write
|
| 65 |
+
2. **State Reducers:** `Annotated[List[X], operator.add]` for appending (not overwriting)
|
| 66 |
+
3. **HuggingFace Compatible:** Works with `langchain-huggingface` (Llama 3.1)
|
| 67 |
+
4. **Production-Ready:** MongoDB checkpointer for persistence, SQLite for dev
|
| 68 |
+
|
| 69 |
+
### Target Architecture
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
# src/agents/graph/state.py (PROPOSED)
|
| 73 |
+
from typing import Annotated, TypedDict, Literal
|
| 74 |
+
import operator
|
| 75 |
+
|
| 76 |
+
class Hypothesis(TypedDict):
|
| 77 |
+
id: str
|
| 78 |
+
statement: str
|
| 79 |
+
status: Literal["proposed", "validating", "confirmed", "refuted"]
|
| 80 |
+
confidence: float
|
| 81 |
+
supporting_evidence_ids: list[str]
|
| 82 |
+
contradicting_evidence_ids: list[str]
|
| 83 |
+
|
| 84 |
+
class Conflict(TypedDict):
|
| 85 |
+
id: str
|
| 86 |
+
description: str
|
| 87 |
+
source_a_id: str
|
| 88 |
+
source_b_id: str
|
| 89 |
+
status: Literal["open", "resolved"]
|
| 90 |
+
resolution: str | None
|
| 91 |
+
|
| 92 |
+
class ResearchState(TypedDict):
|
| 93 |
+
query: str # Immutable original question
|
| 94 |
+
hypotheses: Annotated[list[Hypothesis], operator.add]
|
| 95 |
+
conflicts: Annotated[list[Conflict], operator.add]
|
| 96 |
+
evidence_ids: Annotated[list[str], operator.add] # Links to ChromaDB
|
| 97 |
+
messages: Annotated[list[BaseMessage], operator.add]
|
| 98 |
+
next_step: Literal["search", "judge", "resolve", "synthesize", "finish"]
|
| 99 |
+
iteration_count: int
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## Implementation Dependencies
|
| 105 |
+
|
| 106 |
+
| Package | Purpose | Install |
|
| 107 |
+
|---------|---------|---------|
|
| 108 |
+
| `langgraph>=0.2` | State graph framework | `uv add langgraph` |
|
| 109 |
+
| `langchain>=0.3` | Base abstractions | `uv add langchain` |
|
| 110 |
+
| `langchain-huggingface` | Llama 3.1 integration | `uv add langchain-huggingface` |
|
| 111 |
+
| `langgraph-checkpoint-sqlite` | Dev persistence | `uv add langgraph-checkpoint-sqlite` |
|
| 112 |
+
|
| 113 |
+
**Note:** MongoDB checkpointer (`langgraph-checkpoint-mongodb`) recommended for production per [MongoDB blog](https://www.mongodb.com/company/blog/product-release-announcements/powering-long-term-memory-for-agents-langgraph).
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## Alternative Considered: Mem0
|
| 118 |
+
|
| 119 |
+
[Mem0](https://mem0.ai/) specializes in long-term memory and [outperformed OpenAI by 26%](https://guptadeepak.com/the-ai-memory-wars-why-one-system-crushed-the-competition-and-its-not-openai/) in benchmarks. However:
|
| 120 |
+
|
| 121 |
+
- **Mem0 excels at:** User personalization, cross-session memory
|
| 122 |
+
- **LangGraph excels at:** Workflow orchestration, state machines
|
| 123 |
+
- **Verdict:** Use LangGraph for orchestration + optionally add Mem0 for user-level memory later
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## Quick Win (Separate from LangGraph)
|
| 128 |
+
|
| 129 |
+
Enable ChromaDB persistence in `src/services/embeddings.py:44`:
|
| 130 |
+
```python
|
| 131 |
+
# FROM:
|
| 132 |
+
self._client = chromadb.Client() # In-memory
|
| 133 |
+
|
| 134 |
+
# TO:
|
| 135 |
+
self._client = chromadb.PersistentClient(path=settings.chroma_db_path)
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
This alone gives cross-session evidence persistence (P3_ARCHITECTURAL_GAP_EPHEMERAL_MEMORY fix).
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
## References
|
| 143 |
+
|
| 144 |
+
- [LangGraph Multi-Agent Orchestration Guide 2025](https://latenode.com/blog/langgraph-multi-agent-orchestration-complete-framework-guide-architecture-analysis-2025)
|
| 145 |
+
- [Long-Term Agentic Memory with LangGraph](https://medium.com/@anil.jain.baba/long-term-agentic-memory-with-langgraph-824050b09852)
|
| 146 |
+
- [LangGraph vs LangChain 2025](https://kanerika.com/blogs/langchain-vs-langgraph/)
|
| 147 |
+
- [MongoDB + LangGraph Checkpointers](https://www.mongodb.com/company/blog/product-release-announcements/powering-long-term-memory-for-agents-langgraph)
|
| 148 |
+
- [Mem0 + LangGraph Integration](https://datacouch.io/blog/build-smarter-ai-agents-mem0-langgraph-guide/)
|
docs/specs/SPEC_07_LANGGRAPH_MEMORY_ARCH.md
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPEC-07: Structured Cognitive Memory Architecture (LangGraph)
|
| 2 |
+
|
| 3 |
+
**Status:** APPROVED
|
| 4 |
+
**Priority:** HIGH (Strategic)
|
| 5 |
+
**Author:** DeepBoner Architecture Team
|
| 6 |
+
**Date:** 2025-11-29
|
| 7 |
+
**Last Updated:** 2025-11-29
|
| 8 |
+
**Related Bugs:** [P3_ARCHITECTURAL_GAP_STRUCTURED_MEMORY](../bugs/P3_ARCHITECTURAL_GAP_STRUCTURED_MEMORY.md)
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
## 1. Executive Summary
|
| 13 |
+
|
| 14 |
+
Upgrade DeepBoner's "Advanced Mode" from chat-based coordination to a **State-Driven Cognitive Architecture** using LangGraph. This enables:
|
| 15 |
+
- Explicit hypothesis tracking with confidence scores
|
| 16 |
+
- Automatic conflict detection and resolution
|
| 17 |
+
- Persistent research state (pause/resume)
|
| 18 |
+
- Context-aware decision making over long runs
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 2. Problem Statement
|
| 23 |
+
|
| 24 |
+
### Current Architecture Limitations
|
| 25 |
+
|
| 26 |
+
The `AdvancedOrchestrator` (`src/orchestrators/advanced.py`) uses Microsoft's `agent-framework-core` with chat-based coordination:
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
# Current: State is IMPLICIT (chat history)
|
| 30 |
+
workflow = MagenticBuilder()
|
| 31 |
+
.participants(searcher=..., judge=..., ...)
|
| 32 |
+
.with_standard_manager(chat_client=..., max_round_count=10)
|
| 33 |
+
.build()
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
| Problem | Root Cause | File Location |
|
| 37 |
+
|---------|------------|---------------|
|
| 38 |
+
| Context Drift | State lives only in chat messages | `advanced.py:126-132` |
|
| 39 |
+
| Conflict Blindness | No structured conflict tracking | `state.py` (no `conflicts` field) |
|
| 40 |
+
| No Hypothesis Management | `MagenticState` only tracks `evidence` | `state.py:21` |
|
| 41 |
+
| Can't Pause/Resume | No checkpointing mechanism | N/A |
|
| 42 |
+
|
| 43 |
+
### Evidence from Codebase
|
| 44 |
+
|
| 45 |
+
**MagenticState (src/agents/state.py:18-26):**
|
| 46 |
+
```python
|
| 47 |
+
class MagenticState(BaseModel):
|
| 48 |
+
evidence: list[Evidence] = Field(default_factory=list)
|
| 49 |
+
embedding_service: Any = None # Just data, no cognitive state
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
**EmbeddingService (src/services/embeddings.py:44-47):**
|
| 53 |
+
```python
|
| 54 |
+
self._client = chromadb.Client() # In-memory only
|
| 55 |
+
self._collection = self._client.create_collection(
|
| 56 |
+
name=f"evidence_{uuid.uuid4().hex}", # Random name = ephemeral
|
| 57 |
+
...
|
| 58 |
+
)
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
## 3. Solution: LangGraph State Graph
|
| 64 |
+
|
| 65 |
+
### Why LangGraph? (November 2025 Analysis)
|
| 66 |
+
|
| 67 |
+
Based on [comprehensive framework comparison](https://kanerika.com/blogs/langchain-vs-langgraph/):
|
| 68 |
+
|
| 69 |
+
| Feature | `agent-framework-core` (Current) | LangGraph (Proposed) |
|
| 70 |
+
|---------|----------------------------------|----------------------|
|
| 71 |
+
| State Management | Implicit (chat) | Explicit (TypedDict) |
|
| 72 |
+
| Loops/Branches | Limited | Native support |
|
| 73 |
+
| Checkpointing | None | SQLite/MongoDB |
|
| 74 |
+
| HuggingFace | Requires OpenAI format | Native `langchain-huggingface` |
|
| 75 |
+
|
| 76 |
+
### Architecture Overview
|
| 77 |
+
|
| 78 |
+
```
|
| 79 |
+
┌─────────────────────────────────────────────────────────────────┐
|
| 80 |
+
│ ResearchState │
|
| 81 |
+
│ ┌─────────────┬──────────────┬───────────────┬──────────────┐ │
|
| 82 |
+
│ │ query │ hypotheses │ conflicts │ next_step │ │
|
| 83 |
+
│ │ (string) │ (list) │ (list) │ (enum) │ │
|
| 84 |
+
│ └─────────────┴──────────────┴───────────────┴──────────────┘ │
|
| 85 |
+
└─────────────────────────────────────────────────────────────────┘
|
| 86 |
+
│
|
| 87 |
+
▼
|
| 88 |
+
┌─────────────────────────────────────────────────────────────────┐
|
| 89 |
+
│ StateGraph │
|
| 90 |
+
│ │
|
| 91 |
+
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
|
| 92 |
+
│ │ SEARCH │────▶│ JUDGE │────▶│ RESOLVE │ │
|
| 93 |
+
│ │ Node │ │ Node │ │ Node │ │
|
| 94 |
+
│ └──────────┘ └──────────┘ └──────────┘ │
|
| 95 |
+
│ ▲ │ │ │
|
| 96 |
+
│ │ ▼ │ │
|
| 97 |
+
│ │ ┌──────────┐ │ │
|
| 98 |
+
│ └──────────│SUPERVISOR│◀──────────┘ │
|
| 99 |
+
│ │ Node │ │
|
| 100 |
+
│ └──────────┘ │
|
| 101 |
+
│ │ │
|
| 102 |
+
│ ▼ │
|
| 103 |
+
│ ┌──────────┐ │
|
| 104 |
+
│ │SYNTHESIZE│ │
|
| 105 |
+
│ │ Node │ │
|
| 106 |
+
│ └──────────┘ │
|
| 107 |
+
└─────────────────────────────────────────────────────────────────┘
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
---
|
| 111 |
+
|
| 112 |
+
## 4. Technical Specification
|
| 113 |
+
|
| 114 |
+
### 4.1 State Schema
|
| 115 |
+
|
| 116 |
+
**File:** `src/agents/graph/state.py`
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
"""Structured state for LangGraph research workflow."""
|
| 120 |
+
from typing import Annotated, TypedDict, Literal
|
| 121 |
+
import operator
|
| 122 |
+
from langchain_core.messages import BaseMessage
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class Hypothesis(TypedDict):
|
| 126 |
+
"""A research hypothesis with evidence tracking."""
|
| 127 |
+
id: str
|
| 128 |
+
statement: str
|
| 129 |
+
status: Literal["proposed", "validating", "confirmed", "refuted"]
|
| 130 |
+
confidence: float # 0.0 - 1.0
|
| 131 |
+
supporting_evidence_ids: list[str]
|
| 132 |
+
contradicting_evidence_ids: list[str]
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class Conflict(TypedDict):
|
| 136 |
+
"""A detected contradiction between sources."""
|
| 137 |
+
id: str
|
| 138 |
+
description: str
|
| 139 |
+
source_a_id: str
|
| 140 |
+
source_b_id: str
|
| 141 |
+
status: Literal["open", "resolved"]
|
| 142 |
+
resolution: str | None
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class ResearchState(TypedDict):
|
| 146 |
+
"""The cognitive state shared across all graph nodes.
|
| 147 |
+
|
| 148 |
+
Uses Annotated with operator.add for list fields to enable
|
| 149 |
+
additive updates (append) rather than replacement.
|
| 150 |
+
"""
|
| 151 |
+
# Immutable context
|
| 152 |
+
query: str
|
| 153 |
+
|
| 154 |
+
# Cognitive state (the "blackboard")
|
| 155 |
+
hypotheses: Annotated[list[Hypothesis], operator.add]
|
| 156 |
+
conflicts: Annotated[list[Conflict], operator.add]
|
| 157 |
+
|
| 158 |
+
# Evidence links (actual content in ChromaDB)
|
| 159 |
+
evidence_ids: Annotated[list[str], operator.add]
|
| 160 |
+
|
| 161 |
+
# Chat history (for LLM context)
|
| 162 |
+
messages: Annotated[list[BaseMessage], operator.add]
|
| 163 |
+
|
| 164 |
+
# Control flow
|
| 165 |
+
next_step: Literal["search", "judge", "resolve", "synthesize", "finish"]
|
| 166 |
+
iteration_count: int
|
| 167 |
+
max_iterations: int
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
### 4.2 Graph Nodes
|
| 171 |
+
|
| 172 |
+
Each node is a pure function: `(state: ResearchState) -> dict`
|
| 173 |
+
|
| 174 |
+
**File:** `src/agents/graph/nodes.py`
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
"""Graph node implementations."""
|
| 178 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 179 |
+
from src.tools.pubmed import search_pubmed
|
| 180 |
+
from src.tools.clinicaltrials import search_clinicaltrials
|
| 181 |
+
from src.tools.europepmc import search_europepmc
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
async def search_node(state: ResearchState) -> dict:
|
| 185 |
+
"""Execute search across all sources.
|
| 186 |
+
|
| 187 |
+
Returns partial state update (additive via operator.add).
|
| 188 |
+
"""
|
| 189 |
+
query = state["query"]
|
| 190 |
+
# Reuse existing tools
|
| 191 |
+
results = await asyncio.gather(
|
| 192 |
+
search_pubmed(query),
|
| 193 |
+
search_clinicaltrials(query),
|
| 194 |
+
search_europepmc(query),
|
| 195 |
+
)
|
| 196 |
+
new_evidence_ids = [...] # Store in ChromaDB, return IDs
|
| 197 |
+
return {
|
| 198 |
+
"evidence_ids": new_evidence_ids,
|
| 199 |
+
"messages": [AIMessage(content=f"Found {len(new_evidence_ids)} papers")],
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
async def judge_node(state: ResearchState) -> dict:
|
| 204 |
+
"""Evaluate evidence and update hypothesis confidence.
|
| 205 |
+
|
| 206 |
+
Key responsibility: Detect conflicts and flag them.
|
| 207 |
+
"""
|
| 208 |
+
# LLM call to evaluate hypotheses against evidence
|
| 209 |
+
# If contradiction found: add to conflicts list
|
| 210 |
+
return {
|
| 211 |
+
"hypotheses": updated_hypotheses, # With new confidence scores
|
| 212 |
+
"conflicts": new_conflicts, # Any detected contradictions
|
| 213 |
+
"messages": [...],
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
async def resolve_node(state: ResearchState) -> dict:
|
| 218 |
+
"""Handle open conflicts via tie-breaker logic.
|
| 219 |
+
|
| 220 |
+
Triggers targeted search or reasoning to resolve.
|
| 221 |
+
"""
|
| 222 |
+
open_conflicts = [c for c in state["conflicts"] if c["status"] == "open"]
|
| 223 |
+
# For each conflict: search for decisive evidence or make judgment call
|
| 224 |
+
return {
|
| 225 |
+
"conflicts": resolved_conflicts,
|
| 226 |
+
"messages": [...],
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
async def synthesize_node(state: ResearchState) -> dict:
|
| 231 |
+
"""Generate final research report.
|
| 232 |
+
|
| 233 |
+
Only uses confirmed hypotheses and resolved conflicts.
|
| 234 |
+
"""
|
| 235 |
+
confirmed = [h for h in state["hypotheses"] if h["status"] == "confirmed"]
|
| 236 |
+
# Generate structured report
|
| 237 |
+
return {
|
| 238 |
+
"messages": [AIMessage(content=report_markdown)],
|
| 239 |
+
"next_step": "finish",
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def supervisor_node(state: ResearchState) -> dict:
|
| 244 |
+
"""Route to next node based on state.
|
| 245 |
+
|
| 246 |
+
This is the "brain" - uses LLM to decide next action
|
| 247 |
+
based on STRUCTURED STATE (not just chat).
|
| 248 |
+
"""
|
| 249 |
+
# Decision logic:
|
| 250 |
+
# 1. If open conflicts exist -> "resolve"
|
| 251 |
+
# 2. If hypotheses need more evidence -> "search"
|
| 252 |
+
# 3. If evidence is sufficient -> "judge"
|
| 253 |
+
# 4. If all hypotheses confirmed -> "synthesize"
|
| 254 |
+
# 5. If max iterations -> "synthesize" (forced)
|
| 255 |
+
return {"next_step": decided_step, "iteration_count": state["iteration_count"] + 1}
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### 4.3 Graph Definition
|
| 259 |
+
|
| 260 |
+
**File:** `src/agents/graph/workflow.py`
|
| 261 |
+
|
| 262 |
+
```python
|
| 263 |
+
"""LangGraph workflow definition."""
|
| 264 |
+
from langgraph.graph import StateGraph, END
|
| 265 |
+
from langgraph.checkpoint.sqlite import SqliteSaver
|
| 266 |
+
|
| 267 |
+
from src.agents.graph.state import ResearchState
|
| 268 |
+
from src.agents.graph.nodes import (
|
| 269 |
+
search_node,
|
| 270 |
+
judge_node,
|
| 271 |
+
resolve_node,
|
| 272 |
+
synthesize_node,
|
| 273 |
+
supervisor_node,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def create_research_graph(checkpointer=None):
|
| 278 |
+
"""Build the research state graph.
|
| 279 |
+
|
| 280 |
+
Args:
|
| 281 |
+
checkpointer: Optional SqliteSaver/MongoDBSaver for persistence
|
| 282 |
+
"""
|
| 283 |
+
graph = StateGraph(ResearchState)
|
| 284 |
+
|
| 285 |
+
# Add nodes
|
| 286 |
+
graph.add_node("supervisor", supervisor_node)
|
| 287 |
+
graph.add_node("search", search_node)
|
| 288 |
+
graph.add_node("judge", judge_node)
|
| 289 |
+
graph.add_node("resolve", resolve_node)
|
| 290 |
+
graph.add_node("synthesize", synthesize_node)
|
| 291 |
+
|
| 292 |
+
# Define edges (supervisor routes based on state.next_step)
|
| 293 |
+
graph.add_edge("search", "supervisor")
|
| 294 |
+
graph.add_edge("judge", "supervisor")
|
| 295 |
+
graph.add_edge("resolve", "supervisor")
|
| 296 |
+
graph.add_edge("synthesize", END)
|
| 297 |
+
|
| 298 |
+
# Conditional routing from supervisor
|
| 299 |
+
graph.add_conditional_edges(
|
| 300 |
+
"supervisor",
|
| 301 |
+
lambda state: state["next_step"],
|
| 302 |
+
{
|
| 303 |
+
"search": "search",
|
| 304 |
+
"judge": "judge",
|
| 305 |
+
"resolve": "resolve",
|
| 306 |
+
"synthesize": "synthesize",
|
| 307 |
+
"finish": END,
|
| 308 |
+
},
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
# Entry point
|
| 312 |
+
graph.set_entry_point("supervisor")
|
| 313 |
+
|
| 314 |
+
return graph.compile(checkpointer=checkpointer)
|
| 315 |
+
```
|
| 316 |
+
|
| 317 |
+
### 4.4 Orchestrator Integration
|
| 318 |
+
|
| 319 |
+
**File:** `src/orchestrators/langgraph_orchestrator.py`
|
| 320 |
+
|
| 321 |
+
```python
|
| 322 |
+
"""LangGraph-based orchestrator with structured state."""
|
| 323 |
+
from collections.abc import AsyncGenerator
|
| 324 |
+
from langgraph.checkpoint.sqlite.aio import AsyncSqliteSaver
|
| 325 |
+
|
| 326 |
+
from src.agents.graph.workflow import create_research_graph
|
| 327 |
+
from src.agents.graph.state import ResearchState
|
| 328 |
+
from src.orchestrators.base import OrchestratorProtocol
|
| 329 |
+
from src.utils.models import AgentEvent
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
class LangGraphOrchestrator(OrchestratorProtocol):
|
| 333 |
+
"""State-driven research orchestrator using LangGraph."""
|
| 334 |
+
|
| 335 |
+
def __init__(
|
| 336 |
+
self,
|
| 337 |
+
max_iterations: int = 10,
|
| 338 |
+
checkpoint_path: str | None = None,
|
| 339 |
+
):
|
| 340 |
+
self._max_iterations = max_iterations
|
| 341 |
+
self._checkpoint_path = checkpoint_path
|
| 342 |
+
|
| 343 |
+
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
|
| 344 |
+
"""Execute research workflow with structured state."""
|
| 345 |
+
# Setup checkpointer (SQLite for dev, MongoDB for prod)
|
| 346 |
+
checkpointer = None
|
| 347 |
+
if self._checkpoint_path:
|
| 348 |
+
checkpointer = AsyncSqliteSaver.from_conn_string(self._checkpoint_path)
|
| 349 |
+
|
| 350 |
+
graph = create_research_graph(checkpointer)
|
| 351 |
+
|
| 352 |
+
# Initialize state
|
| 353 |
+
initial_state: ResearchState = {
|
| 354 |
+
"query": query,
|
| 355 |
+
"hypotheses": [],
|
| 356 |
+
"conflicts": [],
|
| 357 |
+
"evidence_ids": [],
|
| 358 |
+
"messages": [],
|
| 359 |
+
"next_step": "search",
|
| 360 |
+
"iteration_count": 0,
|
| 361 |
+
"max_iterations": self._max_iterations,
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
yield AgentEvent(type="started", message=f"Starting research: {query}")
|
| 365 |
+
|
| 366 |
+
# Stream through graph
|
| 367 |
+
async for event in graph.astream(initial_state):
|
| 368 |
+
# Convert graph events to AgentEvents
|
| 369 |
+
yield self._convert_event(event)
|
| 370 |
+
```
|
| 371 |
+
|
| 372 |
+
---
|
| 373 |
+
|
| 374 |
+
## 5. Dependencies
|
| 375 |
+
|
| 376 |
+
### Required Packages
|
| 377 |
+
|
| 378 |
+
```toml
|
| 379 |
+
# pyproject.toml additions
|
| 380 |
+
[project.optional-dependencies]
|
| 381 |
+
langgraph = [
|
| 382 |
+
"langgraph>=0.2.50",
|
| 383 |
+
"langchain>=0.3.9",
|
| 384 |
+
"langchain-core>=0.3.21",
|
| 385 |
+
"langchain-huggingface>=0.1.2",
|
| 386 |
+
"langgraph-checkpoint-sqlite>=2.0.0",
|
| 387 |
+
]
|
| 388 |
+
```
|
| 389 |
+
|
| 390 |
+
### Installation
|
| 391 |
+
|
| 392 |
+
```bash
|
| 393 |
+
# Development
|
| 394 |
+
uv add langgraph langchain langchain-huggingface langgraph-checkpoint-sqlite
|
| 395 |
+
|
| 396 |
+
# Production (add MongoDB checkpointer)
|
| 397 |
+
uv add langgraph-checkpoint-mongodb
|
| 398 |
+
```
|
| 399 |
+
|
| 400 |
+
### HuggingFace Model Integration
|
| 401 |
+
|
| 402 |
+
```python
|
| 403 |
+
# Using Llama 3.1 via HuggingFace Inference API
|
| 404 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 405 |
+
|
| 406 |
+
llm = HuggingFaceEndpoint(
|
| 407 |
+
repo_id="meta-llama/Llama-3.1-70B-Instruct",
|
| 408 |
+
task="text-generation",
|
| 409 |
+
max_new_tokens=2048,
|
| 410 |
+
huggingfacehub_api_token=settings.hf_token,
|
| 411 |
+
)
|
| 412 |
+
chat = ChatHuggingFace(llm=llm)
|
| 413 |
+
```
|
| 414 |
+
|
| 415 |
+
---
|
| 416 |
+
|
| 417 |
+
## 6. Implementation Plan (TDD)
|
| 418 |
+
|
| 419 |
+
### Phase 1: State Schema (2 hours)
|
| 420 |
+
|
| 421 |
+
1. Create `src/agents/graph/__init__.py`
|
| 422 |
+
2. Create `src/agents/graph/state.py` with TypedDict schemas
|
| 423 |
+
3. Write `tests/unit/graph/test_state.py`:
|
| 424 |
+
- Test reducer behavior (operator.add)
|
| 425 |
+
- Test state initialization
|
| 426 |
+
- Test hypothesis/conflict type validation
|
| 427 |
+
|
| 428 |
+
### Phase 2: Graph Nodes (4 hours)
|
| 429 |
+
|
| 430 |
+
1. Create `src/agents/graph/nodes.py`
|
| 431 |
+
2. Adapt existing tool calls (pubmed, clinicaltrials, europepmc)
|
| 432 |
+
3. Write `tests/unit/graph/test_nodes.py`:
|
| 433 |
+
- Test each node in isolation (mock LLM)
|
| 434 |
+
- Test state update format
|
| 435 |
+
|
| 436 |
+
### Phase 3: Workflow Graph (2 hours)
|
| 437 |
+
|
| 438 |
+
1. Create `src/agents/graph/workflow.py`
|
| 439 |
+
2. Wire up StateGraph with conditional edges
|
| 440 |
+
3. Write `tests/integration/graph/test_workflow.py`:
|
| 441 |
+
- Test routing logic
|
| 442 |
+
- Test end-to-end with mocked nodes
|
| 443 |
+
|
| 444 |
+
### Phase 4: Orchestrator (2 hours)
|
| 445 |
+
|
| 446 |
+
1. Create `src/orchestrators/langgraph_orchestrator.py`
|
| 447 |
+
2. Update `src/orchestrators/factory.py` to include "langgraph" mode
|
| 448 |
+
3. Update `src/app.py` UI dropdown
|
| 449 |
+
4. Write `tests/e2e/test_langgraph_mode.py`
|
| 450 |
+
|
| 451 |
+
### Phase 5: Gradio Integration (1 hour)
|
| 452 |
+
|
| 453 |
+
1. Add "God Mode" option to Gradio dropdown
|
| 454 |
+
2. Test streaming events
|
| 455 |
+
3. Verify checkpointing (pause/resume)
|
| 456 |
+
|
| 457 |
+
---
|
| 458 |
+
|
| 459 |
+
## 7. Migration Strategy
|
| 460 |
+
|
| 461 |
+
1. **Parallel Implementation:** Build as new mode alongside existing "simple" and "magentic"
|
| 462 |
+
2. **UI Dropdown:** Add "God Mode (Experimental)" option
|
| 463 |
+
3. **Feature Flag:** Use `settings.enable_langgraph_mode` to control availability
|
| 464 |
+
4. **Deprecation Path:** Once stable, deprecate "magentic" mode (Q1 2026)
|
| 465 |
+
|
| 466 |
+
---
|
| 467 |
+
|
| 468 |
+
## 8. Acceptance Criteria
|
| 469 |
+
|
| 470 |
+
- [ ] `ResearchState` TypedDict defined with all fields
|
| 471 |
+
- [ ] All 4 nodes (search, judge, resolve, synthesize) implemented
|
| 472 |
+
- [ ] Supervisor routing logic works based on structured state
|
| 473 |
+
- [ ] Checkpointing enables pause/resume
|
| 474 |
+
- [ ] Works with HuggingFace Inference API (no OpenAI required)
|
| 475 |
+
- [ ] Integration tests pass with mocked LLM
|
| 476 |
+
- [ ] E2E test passes with real API call
|
| 477 |
+
|
| 478 |
+
---
|
| 479 |
+
|
| 480 |
+
## 9. References
|
| 481 |
+
|
| 482 |
+
### Primary Sources
|
| 483 |
+
- [LangGraph Official Docs](https://docs.langchain.com/oss/python/langgraph)
|
| 484 |
+
- [LangGraph Persistence Guide](https://docs.langchain.com/oss/python/langgraph/persistence)
|
| 485 |
+
- [MongoDB + LangGraph Integration](https://www.mongodb.com/docs/atlas/ai-integrations/langgraph/)
|
| 486 |
+
|
| 487 |
+
### Research & Analysis
|
| 488 |
+
- [LangGraph Multi-Agent Orchestration 2025](https://latenode.com/blog/langgraph-multi-agent-orchestration-complete-framework-guide-architecture-analysis-2025)
|
| 489 |
+
- [LangChain vs LangGraph Comparison](https://kanerika.com/blogs/langchain-vs-langgraph/)
|
| 490 |
+
- [Building Deep Research Agents](https://towardsdatascience.com/langgraph-101-lets-build-a-deep-research-agent/)
|
| 491 |
+
- [Mem0 + LangGraph Integration](https://blog.futuresmart.ai/ai-agents-memory-mem0-langgraph-agent-integration)
|
| 492 |
+
- [AI Memory Wars Benchmark](https://guptadeepak.com/the-ai-memory-wars-why-one-system-crushed-the-competition-and-its-not-openai/)
|