File size: 10,278 Bytes
abf5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268cfc5
abf5292
 
f283b95
268cfc5
f283b95
268cfc5
f283b95
268cfc5
abf5292
 
 
 
 
 
 
 
 
 
268cfc5
abf5292
 
 
 
 
 
 
 
f283b95
 
 
 
 
 
abf5292
 
 
 
 
 
 
 
 
 
 
 
 
f283b95
abf5292
 
 
 
 
f283b95
 
 
 
 
abf5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f283b95
 
abf5292
 
 
 
 
 
 
 
f283b95
abf5292
 
 
 
 
 
268cfc5
 
 
f283b95
abf5292
f283b95
 
268cfc5
f283b95
 
268cfc5
f283b95
 
 
 
268cfc5
 
f283b95
268cfc5
 
 
f283b95
 
 
 
abf5292
 
6fc6c55
abf5292
 
 
f283b95
 
abf5292
f283b95
abf5292
f283b95
 
 
abf5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import json

# -----------------------------
# 辅助函数:安全转换数值
# -----------------------------
def safe_int(val, default=0):
    if val is None:
        return default
    try:
        return int(float(val))
    except (ValueError, TypeError):
        return default

def safe_float(val, default=0.0):
    if val is None:
        return default
    try:
        return float(val)
    except (ValueError, TypeError):
        return default

# -----------------------------
# 步骤1:提取带 fallback 的数据(支持最新年+历史4年,共5年)
# -----------------------------
def extract_last_three_with_fallback(data_list):
    """
    从数据列表中提取最新的5年数据(最新1年 + 历史4年)
    优先级: FY > Q4 > Q3 > Q2 > Q1
    返回: 最新的5个period的数据
    """
    years = [2025, 2024, 2023, 2022, 2021]  # ✅ 扩展到5年,确保Latest 3 Years有完整数据
    priority_levels = [
        ("FY", [f"FY{y}" for y in years]),
        ("Q4", [f"{y}Q4" for y in years]),
        ("Q3", [f"{y}Q3" for y in years]),
        ("Q2", [f"{y}Q2" for y in years]),
        ("Q1", [f"{y}Q1" for y in years]),
    ]
    
    data_map = {item["period"]: item for item in data_list if isinstance(item, dict) and "period" in item}
    
    # 尝试找到完整的5年数据
    for level_name, periods in priority_levels:
        records = []
        valid = True
        for period in periods:
            item = data_map.get(period)
            if not isinstance(item, dict) or item.get("total_revenue") is None:
                valid = False
                break
            # 从period中提取fiscal_year
            if level_name == "FY":
                fiscal_year = int(period[2:])  # FY2025 -> 2025
            else:
                fiscal_year = int(period[:4])  # 2025Q3 -> 2025
            
            records.append({
                "period": period,
                "fiscal_year": fiscal_year,
                "level": level_name,
                "total_revenue": item.get("total_revenue"),
                "net_income": item.get("net_income"),
                "earnings_per_share": item.get("earnings_per_share"),
                "operating_expenses": item.get("operating_expenses"),
                "operating_cash_flow": item.get("operating_cash_flow")
            })
        if valid:
            return records
    
    # Fallback: 返回第一个有数据的层级(即使不全)
    for level_name, periods in priority_levels:
        records = []
        for period in periods:
            item = data_map.get(period)
            if isinstance(item, dict) and item.get("total_revenue") is not None:
                if level_name == "FY":
                    fiscal_year = int(period[2:])
                else:
                    fiscal_year = int(period[:4])
                
                records.append({
                    "period": period,
                    "fiscal_year": fiscal_year,
                    "level": level_name,
                    "total_revenue": item.get("total_revenue"),
                    "net_income": item.get("net_income"),
                    "earnings_per_share": item.get("earnings_per_share"),
                    "operating_expenses": item.get("operating_expenses"),
                    "operating_cash_flow": item.get("operating_cash_flow")
                })
        if records:
            return records
    return []

# -----------------------------
# 步骤2:格式化数字(B / M)
# -----------------------------
def format_number(value):
    if value >= 1_000_000_000:
        num = value / 1_000_000_000
        if num == int(num):
            return f"${int(num)}B"
        else:
            return f"${num:.2f}B".rstrip('0').rstrip('.')
    elif value >= 1_000_000:
        num = value / 1_000_000
        if num == int(num):
            return f"${int(num)}M"
        else:
            return f"${num:.1f}M".rstrip('0').rstrip('.')
    elif value >= 1_000:
        return f"${value:,.0f}"
    else:
        return f"${value}"

def format_eps(value):
    return f"${value:.2f}"

def calculate_change(current, previous):
    if previous == 0:
        return "+0.0%" if current >= 0 else "-0.0%"
    change = (current - previous) / abs(previous) * 100
    sign = "+" if change >= 0 else "-"
    return f"{sign}{abs(change):.1f}%"

# -----------------------------
# 步骤3:构建最终 metrics
# -----------------------------
def build_financial_metrics(three_year_data):
    if len(three_year_data) < 2:
        raise ValueError("至少需要两年数据来计算同比变化")

    sorted_data = sorted(three_year_data, key=lambda x: x["fiscal_year"], reverse=True)
    latest = sorted_data[0]
    previous = sorted_data[1]

    rev_curr = safe_int(latest["total_revenue"])
    rev_prev = safe_int(previous["total_revenue"])

    net_curr = safe_int(latest["net_income"])
    net_prev = safe_int(previous["net_income"])

    eps_curr = safe_float(latest["earnings_per_share"])
    eps_prev = safe_float(previous["earnings_per_share"])

    opex_curr = safe_int(latest["operating_expenses"])
    opex_prev = safe_int(previous["operating_expenses"])

    cash_curr = safe_int(latest["operating_cash_flow"])
    cash_prev = safe_int(previous["operating_cash_flow"])

    return [
        {
            "label": "Total Revenue",
            "value": format_number(rev_curr),
            "change": calculate_change(rev_curr, rev_prev),
            "color": "green" if rev_curr >= rev_prev else "red"
        },
        {
            "label": "Net Income",
            "value": format_number(net_curr),
            "change": calculate_change(net_curr, net_prev),
            "color": "green" if net_curr >= net_prev else "red"
        },
        {
            "label": "Earnings Per Share",
            "value": format_eps(eps_curr),
            "change": calculate_change(eps_curr, eps_prev),
            "color": "green" if eps_curr >= eps_prev else "red"
        },
        {
            "label": "Operating Expenses",
            "value": format_number(opex_curr),
            "change": calculate_change(opex_curr, opex_prev),
            "color": "green" if opex_curr >= opex_prev else "red"
        },
        {
            "label": "Operating Cash Flow",
            "value": format_number(cash_curr),
            "change": calculate_change(cash_curr, cash_prev),
            "color": "green" if cash_curr >= cash_prev else "red"
        }
    ]

# -----------------------------
# 主流程:输入 raw_data,输出 financial_metrics
# -----------------------------
# def process_financial_data(raw_data):
#     # 如果是字符串,先解析 JSON
#     if isinstance(raw_data, str):
#         raw_data = json.loads(raw_data)
    
#     # 确保是列表
#     if not isinstance(raw_data, list):
#         raise TypeError("raw_data 必须是列表或 JSON 字符串表示的列表")
    
#     # 提取三年数据
#     three_years = extract_last_three_with_fallback(raw_data)
    
#     if not three_years:
#         raise ValueError("无法提取有效的三年财务数据")
    
#     # 构建指标
#     return build_financial_metrics(three_years)

def process_financial_data_with_metadata(raw_data):
    """
    返回包含 financial_metrics + year_data + three_year_data 的完整结果
    financial_metrics: 最新1年的指标(与前一年对比)
    three_year_data: 最新的前3年数据(排除最新年,用于Latest 3 Years表格)
    """
    return_value = {"financial_metrics": [], "year_data": "N/A", "three_year_data": []}
    if not raw_data:
        return return_value
    if not isinstance(raw_data, list):
        return return_value
    if not isinstance(raw_data[0], dict):
        return {"financial_metrics": [], "year_data": "N/A", "three_year_data": []}
    
    # 1. 解析输入
    if isinstance(raw_data, str):
        raw_data = json.loads(raw_data)
    if not isinstance(raw_data, list):
        raise TypeError("raw_data 必须是列表或 JSON 字符串")

    # 2. ✅ 提取5年数据(最新1年 + 历史4年,带 fallback)
    five_years = extract_last_three_with_fallback(raw_data)
    if not five_years:
        print("无法提取有效的财务数据")
        return return_value
    
    # 按fiscal_year降序排序
    five_years_sorted = sorted(five_years, key=lambda x: x["fiscal_year"], reverse=True)
    
    # 3. 分离最新1年和历史3年
    if len(five_years_sorted) < 2:
        print("数据不足,至少需要2年数据")
        return return_value
    
    # 最新年用于financial_metrics
    latest_year = five_years_sorted[0]
    previous_year = five_years_sorted[1]
    
    # ✅ 历史3年用于three_year_data表格(取第2-4年,确保有完整3年数据)
    # 例如: [2024, 2023, 2022, 2021, 2020] -> 取索引1-3 -> [2023, 2022, 2021]
    three_years_for_table = five_years_sorted[1:4] if len(five_years_sorted) >= 4 else five_years_sorted[1:]
    
    # 4. 获取最新年份和报告类型(用于 year_data)
    year = latest_year["fiscal_year"]
    level = latest_year["level"]
    
    if level == "FY":
        year_data = f"FY {year}"  # ✅ 改为"FY 2025"格式
    else:  # Q1, Q2, Q3, Q4
        year_data = f"{year} {level}"

    # 5. 构建最新年的financial_metrics(与前一年对比)
    financial_metrics = build_financial_metrics([latest_year, previous_year])

    # 6. 返回完整结构
    return {
        "financial_metrics": financial_metrics,  # 最新1年的指标
        "year_data": year_data,  # 最新年份标签
        "three_year_data": three_years_for_table  # 历史3年数据(用于表格)
    }

# -----------------------------
# 示例使用(替换为你的真实数据)
# -----------------------------
# if __name__ == "__main__":
#     # 👇 在这里粘贴你的原始数据(可以是字符串或变量)
#     # 示例:从文件读取或直接赋值
#     with open("financial_data.json", "r", encoding="utf-8") as f:
#         raw_input = f.read()  # 或者直接赋值为你的数据变量

#     # 处理
#     try:
#         financial_metrics = process_financial_data(raw_input)
#         print(json.dumps(financial_metrics, indent=2))
#     except Exception as e:
#         print("处理失败:", e)