File size: 10,278 Bytes
abf5292 268cfc5 abf5292 f283b95 268cfc5 f283b95 268cfc5 f283b95 268cfc5 abf5292 268cfc5 abf5292 f283b95 abf5292 f283b95 abf5292 f283b95 abf5292 f283b95 abf5292 f283b95 abf5292 268cfc5 f283b95 abf5292 f283b95 268cfc5 f283b95 268cfc5 f283b95 268cfc5 f283b95 268cfc5 f283b95 abf5292 6fc6c55 abf5292 f283b95 abf5292 f283b95 abf5292 f283b95 abf5292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import json
# -----------------------------
# 辅助函数:安全转换数值
# -----------------------------
def safe_int(val, default=0):
if val is None:
return default
try:
return int(float(val))
except (ValueError, TypeError):
return default
def safe_float(val, default=0.0):
if val is None:
return default
try:
return float(val)
except (ValueError, TypeError):
return default
# -----------------------------
# 步骤1:提取带 fallback 的数据(支持最新年+历史4年,共5年)
# -----------------------------
def extract_last_three_with_fallback(data_list):
"""
从数据列表中提取最新的5年数据(最新1年 + 历史4年)
优先级: FY > Q4 > Q3 > Q2 > Q1
返回: 最新的5个period的数据
"""
years = [2025, 2024, 2023, 2022, 2021] # ✅ 扩展到5年,确保Latest 3 Years有完整数据
priority_levels = [
("FY", [f"FY{y}" for y in years]),
("Q4", [f"{y}Q4" for y in years]),
("Q3", [f"{y}Q3" for y in years]),
("Q2", [f"{y}Q2" for y in years]),
("Q1", [f"{y}Q1" for y in years]),
]
data_map = {item["period"]: item for item in data_list if isinstance(item, dict) and "period" in item}
# 尝试找到完整的5年数据
for level_name, periods in priority_levels:
records = []
valid = True
for period in periods:
item = data_map.get(period)
if not isinstance(item, dict) or item.get("total_revenue") is None:
valid = False
break
# 从period中提取fiscal_year
if level_name == "FY":
fiscal_year = int(period[2:]) # FY2025 -> 2025
else:
fiscal_year = int(period[:4]) # 2025Q3 -> 2025
records.append({
"period": period,
"fiscal_year": fiscal_year,
"level": level_name,
"total_revenue": item.get("total_revenue"),
"net_income": item.get("net_income"),
"earnings_per_share": item.get("earnings_per_share"),
"operating_expenses": item.get("operating_expenses"),
"operating_cash_flow": item.get("operating_cash_flow")
})
if valid:
return records
# Fallback: 返回第一个有数据的层级(即使不全)
for level_name, periods in priority_levels:
records = []
for period in periods:
item = data_map.get(period)
if isinstance(item, dict) and item.get("total_revenue") is not None:
if level_name == "FY":
fiscal_year = int(period[2:])
else:
fiscal_year = int(period[:4])
records.append({
"period": period,
"fiscal_year": fiscal_year,
"level": level_name,
"total_revenue": item.get("total_revenue"),
"net_income": item.get("net_income"),
"earnings_per_share": item.get("earnings_per_share"),
"operating_expenses": item.get("operating_expenses"),
"operating_cash_flow": item.get("operating_cash_flow")
})
if records:
return records
return []
# -----------------------------
# 步骤2:格式化数字(B / M)
# -----------------------------
def format_number(value):
if value >= 1_000_000_000:
num = value / 1_000_000_000
if num == int(num):
return f"${int(num)}B"
else:
return f"${num:.2f}B".rstrip('0').rstrip('.')
elif value >= 1_000_000:
num = value / 1_000_000
if num == int(num):
return f"${int(num)}M"
else:
return f"${num:.1f}M".rstrip('0').rstrip('.')
elif value >= 1_000:
return f"${value:,.0f}"
else:
return f"${value}"
def format_eps(value):
return f"${value:.2f}"
def calculate_change(current, previous):
if previous == 0:
return "+0.0%" if current >= 0 else "-0.0%"
change = (current - previous) / abs(previous) * 100
sign = "+" if change >= 0 else "-"
return f"{sign}{abs(change):.1f}%"
# -----------------------------
# 步骤3:构建最终 metrics
# -----------------------------
def build_financial_metrics(three_year_data):
if len(three_year_data) < 2:
raise ValueError("至少需要两年数据来计算同比变化")
sorted_data = sorted(three_year_data, key=lambda x: x["fiscal_year"], reverse=True)
latest = sorted_data[0]
previous = sorted_data[1]
rev_curr = safe_int(latest["total_revenue"])
rev_prev = safe_int(previous["total_revenue"])
net_curr = safe_int(latest["net_income"])
net_prev = safe_int(previous["net_income"])
eps_curr = safe_float(latest["earnings_per_share"])
eps_prev = safe_float(previous["earnings_per_share"])
opex_curr = safe_int(latest["operating_expenses"])
opex_prev = safe_int(previous["operating_expenses"])
cash_curr = safe_int(latest["operating_cash_flow"])
cash_prev = safe_int(previous["operating_cash_flow"])
return [
{
"label": "Total Revenue",
"value": format_number(rev_curr),
"change": calculate_change(rev_curr, rev_prev),
"color": "green" if rev_curr >= rev_prev else "red"
},
{
"label": "Net Income",
"value": format_number(net_curr),
"change": calculate_change(net_curr, net_prev),
"color": "green" if net_curr >= net_prev else "red"
},
{
"label": "Earnings Per Share",
"value": format_eps(eps_curr),
"change": calculate_change(eps_curr, eps_prev),
"color": "green" if eps_curr >= eps_prev else "red"
},
{
"label": "Operating Expenses",
"value": format_number(opex_curr),
"change": calculate_change(opex_curr, opex_prev),
"color": "green" if opex_curr >= opex_prev else "red"
},
{
"label": "Operating Cash Flow",
"value": format_number(cash_curr),
"change": calculate_change(cash_curr, cash_prev),
"color": "green" if cash_curr >= cash_prev else "red"
}
]
# -----------------------------
# 主流程:输入 raw_data,输出 financial_metrics
# -----------------------------
# def process_financial_data(raw_data):
# # 如果是字符串,先解析 JSON
# if isinstance(raw_data, str):
# raw_data = json.loads(raw_data)
# # 确保是列表
# if not isinstance(raw_data, list):
# raise TypeError("raw_data 必须是列表或 JSON 字符串表示的列表")
# # 提取三年数据
# three_years = extract_last_three_with_fallback(raw_data)
# if not three_years:
# raise ValueError("无法提取有效的三年财务数据")
# # 构建指标
# return build_financial_metrics(three_years)
def process_financial_data_with_metadata(raw_data):
"""
返回包含 financial_metrics + year_data + three_year_data 的完整结果
financial_metrics: 最新1年的指标(与前一年对比)
three_year_data: 最新的前3年数据(排除最新年,用于Latest 3 Years表格)
"""
return_value = {"financial_metrics": [], "year_data": "N/A", "three_year_data": []}
if not raw_data:
return return_value
if not isinstance(raw_data, list):
return return_value
if not isinstance(raw_data[0], dict):
return {"financial_metrics": [], "year_data": "N/A", "three_year_data": []}
# 1. 解析输入
if isinstance(raw_data, str):
raw_data = json.loads(raw_data)
if not isinstance(raw_data, list):
raise TypeError("raw_data 必须是列表或 JSON 字符串")
# 2. ✅ 提取5年数据(最新1年 + 历史4年,带 fallback)
five_years = extract_last_three_with_fallback(raw_data)
if not five_years:
print("无法提取有效的财务数据")
return return_value
# 按fiscal_year降序排序
five_years_sorted = sorted(five_years, key=lambda x: x["fiscal_year"], reverse=True)
# 3. 分离最新1年和历史3年
if len(five_years_sorted) < 2:
print("数据不足,至少需要2年数据")
return return_value
# 最新年用于financial_metrics
latest_year = five_years_sorted[0]
previous_year = five_years_sorted[1]
# ✅ 历史3年用于three_year_data表格(取第2-4年,确保有完整3年数据)
# 例如: [2024, 2023, 2022, 2021, 2020] -> 取索引1-3 -> [2023, 2022, 2021]
three_years_for_table = five_years_sorted[1:4] if len(five_years_sorted) >= 4 else five_years_sorted[1:]
# 4. 获取最新年份和报告类型(用于 year_data)
year = latest_year["fiscal_year"]
level = latest_year["level"]
if level == "FY":
year_data = f"FY {year}" # ✅ 改为"FY 2025"格式
else: # Q1, Q2, Q3, Q4
year_data = f"{year} {level}"
# 5. 构建最新年的financial_metrics(与前一年对比)
financial_metrics = build_financial_metrics([latest_year, previous_year])
# 6. 返回完整结构
return {
"financial_metrics": financial_metrics, # 最新1年的指标
"year_data": year_data, # 最新年份标签
"three_year_data": three_years_for_table # 历史3年数据(用于表格)
}
# -----------------------------
# 示例使用(替换为你的真实数据)
# -----------------------------
# if __name__ == "__main__":
# # 👇 在这里粘贴你的原始数据(可以是字符串或变量)
# # 示例:从文件读取或直接赋值
# with open("financial_data.json", "r", encoding="utf-8") as f:
# raw_input = f.read() # 或者直接赋值为你的数据变量
# # 处理
# try:
# financial_metrics = process_financial_data(raw_input)
# print(json.dumps(financial_metrics, indent=2))
# except Exception as e:
# print("处理失败:", e) |