Spaces:
Running
Running
File size: 6,307 Bytes
cdeb1d3 fae4e5b cdeb1d3 fae4e5b 664f166 fae4e5b 98dc4d3 cdeb1d3 fae4e5b 659d404 cdeb1d3 fae4e5b 994b341 fae4e5b 664f166 fae4e5b 994b341 fae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
title: TraceMind AI
emoji: π
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
short_description: AI agent evaluation with MCP-powered intelligence
pinned: false
tags:
- mcp-in-action-track-enterprise
- agent-evaluation
- mcp-client
- leaderboard
- gradio
---
# π TraceMind-AI
Agent Evaluation Platform with MCP-Powered Intelligence
## Overview
TraceMind-AI is a comprehensive platform for evaluating AI agent performance across different models, providers, and configurations. It provides real-time insights, cost analysis, and detailed trace visualization powered by the Model Context Protocol (MCP).
## Features
- **π Real-time Leaderboard**: Live evaluation data from HuggingFace datasets
- **π€ MCP Integration**: AI-powered analysis using remote MCP servers
- **π° Cost Estimation**: Calculate evaluation costs for different models and configurations
- **π Trace Visualization**: Detailed OpenTelemetry trace analysis
- **π Performance Metrics**: GPU utilization, CO2 emissions, token usage tracking
## MCP Integration
TraceMind-AI demonstrates enterprise MCP client usage by connecting to [TraceMind-mcp-server](https://huggingface.co/spaces/kshitijthakkar/TraceMind-mcp-server) via the Model Context Protocol.
**MCP Tools Used:**
- `analyze_leaderboard` - AI-generated insights about evaluation trends
- `estimate_cost` - Cost estimation with hardware recommendations
- `debug_trace` - Interactive trace analysis and debugging
- `compare_runs` - Side-by-side run comparison
- `analyze_results` - Test case analysis with optimization recommendations
## Quick Start
### Prerequisites
- Python 3.10+
- HuggingFace account (for authentication)
- HuggingFace token (optional, for private datasets)
### Installation
1. Clone the repository:
```bash
git clone https://github.com/Mandark-droid/TraceMind-AI.git
cd TraceMind-AI
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Configure environment:
```bash
cp .env.example .env
# Edit .env with your configuration
```
4. Run the application:
```bash
python app.py
```
Visit http://localhost:7860
## Configuration
Create a `.env` file with the following variables:
```env
# HuggingFace Configuration
HF_TOKEN=your_token_here
# MCP Server URL
MCP_SERVER_URL=https://kshitijthakkar-tracemind-mcp-server.hf.space/gradio_api/mcp/
# Dataset Configuration
LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
# Development Mode (optional - disables OAuth for local testing)
DISABLE_OAUTH=true
```
## Data Sources
TraceMind-AI loads evaluation data from HuggingFace datasets:
- **Leaderboard**: Aggregate statistics for all evaluation runs
- **Results**: Individual test case results
- **Traces**: OpenTelemetry trace data
- **Metrics**: GPU metrics and performance data
## Architecture
### Project Structure
```
TraceMind-AI/
βββ app.py # Main Gradio application
βββ data_loader.py # HuggingFace dataset integration
βββ mcp_client/ # MCP client implementation
β βββ client.py # Async MCP client
β βββ sync_wrapper.py # Synchronous wrapper
βββ utils/ # Utilities
β βββ auth.py # HuggingFace OAuth
β βββ navigation.py # Screen navigation
βββ screens/ # UI screens
βββ components/ # Reusable components
βββ styles/ # Custom CSS
```
### MCP Client Integration
TraceMind-AI uses the MCP Python SDK to connect to remote MCP servers:
```python
from mcp_client.sync_wrapper import get_sync_mcp_client
# Initialize MCP client
mcp_client = get_sync_mcp_client()
mcp_client.initialize()
# Call MCP tools
insights = mcp_client.analyze_leaderboard(
metric_focus="overall",
time_range="last_week",
top_n=5
)
```
## Usage
### Viewing the Leaderboard
1. Log in with your HuggingFace account
2. Navigate to the "Leaderboard" tab
3. Click "Load Leaderboard" to fetch the latest data
4. View AI-powered insights generated by the MCP server
### Estimating Costs
1. Navigate to the "Cost Estimator" tab
2. Enter the model name (e.g., `openai/gpt-4`)
3. Select agent type and number of tests
4. Click "Estimate Cost" for AI-powered analysis
### Viewing Trace Details
1. Select an evaluation run from the leaderboard
2. Click on a specific test case
3. View detailed OpenTelemetry trace visualization
4. Ask questions about the trace using MCP-powered analysis
## Technology Stack
- **UI Framework**: Gradio 5.49.1
- **MCP Protocol**: MCP integration via Gradio
- **Data**: HuggingFace Datasets API
- **Authentication**: HuggingFace OAuth
- **AI**: Google Gemini 2.5 Flash (via MCP server)
## Development
### Running Locally
```bash
# Install dependencies
pip install -r requirements.txt
# Set development mode (optional - disables OAuth)
export DISABLE_OAUTH=true
# Run the app
python app.py
```
### Running on HuggingFace Spaces
This application is configured for deployment on HuggingFace Spaces using the Gradio SDK. The `app.py` file serves as the entry point.
## Documentation
For detailed implementation documentation, see:
- [Data Loader API](data_loader.py) - Dataset loading and caching
- [MCP Client API](mcp_client/client.py) - MCP protocol integration
- [Authentication](utils/auth.py) - HuggingFace OAuth integration
## Demo Video
[Link to demo video showing the application in action]
## Social Media
[Link to social media post about this project]
## License
MIT License - See LICENSE file for details
## Contributing
Contributions are welcome! Please open an issue or submit a pull request.
## Acknowledgments
- **MCP Team** - For the Model Context Protocol specification
- **Gradio Team** - For Gradio 6 with MCP integration
- **HuggingFace** - For Spaces hosting and dataset infrastructure
- **Google** - For Gemini API access
## Links
- **Live Demo**: https://huggingface.co/spaces/kshitijthakkar/TraceMind-AI
- **MCP Server**: https://huggingface.co/spaces/kshitijthakkar/TraceMind-mcp-server
- **GitHub**: https://github.com/Mandark-droid/TraceMind-AI
- **MCP Specification**: https://modelcontextprotocol.io
---
**MCP's 1st Birthday Hackathon Submission**
*Track: MCP in Action - Enterprise*
|