Spaces:
Running
Running
File size: 15,534 Bytes
fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b 24b4390 fae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
"""
Data Loader for MockTraceMind
Supports loading from both JSON files and HuggingFace datasets
"""
import os
import json
from pathlib import Path
from typing import Dict, List, Optional, Any, Literal
import pandas as pd
from datasets import load_dataset
from huggingface_hub import HfApi
import gradio as gr
DataSource = Literal["json", "huggingface", "both"]
class DataLoader:
"""
Unified data loader for MockTraceMind
Supports:
- Local JSON files
- HuggingFace datasets
- Automatic fallback between sources
- Caching for performance
"""
def __init__(
self,
data_source: DataSource = "both",
json_data_path: Optional[str] = None,
leaderboard_dataset: Optional[str] = None,
hf_token: Optional[str] = None
):
self.data_source = data_source
self.json_data_path = Path(json_data_path or os.getenv("JSON_DATA_PATH", "./sample_data"))
self.leaderboard_dataset = leaderboard_dataset or os.getenv("LEADERBOARD_DATASET", "huggingface/smolagents-leaderboard")
self.hf_token = hf_token or os.getenv("HF_TOKEN")
# Cache
self._cache: Dict[str, Any] = {}
self.hf_api = HfApi(token=self.hf_token) if self.hf_token else None
def load_leaderboard(self) -> pd.DataFrame:
"""
Load leaderboard dataset
Returns:
DataFrame with leaderboard data
"""
cache_key = "leaderboard"
if cache_key in self._cache:
return self._cache[cache_key]
# Try HuggingFace first
if self.data_source in ["huggingface", "both"]:
try:
df = self._load_leaderboard_from_hf()
self._cache[cache_key] = df
return df
except Exception as e:
print(f"Failed to load from HuggingFace: {e}")
if self.data_source == "huggingface":
raise
# Fallback to JSON
if self.data_source in ["json", "both"]:
try:
df = self._load_leaderboard_from_json()
self._cache[cache_key] = df
return df
except Exception as e:
print(f"Failed to load from JSON: {e}")
raise
raise ValueError("No valid data source available")
def _load_leaderboard_from_hf(self) -> pd.DataFrame:
"""Load leaderboard from HuggingFace dataset"""
try:
ds = load_dataset(self.leaderboard_dataset, split="train", token=self.hf_token)
df = ds.to_pandas()
print(f"[OK] Loaded leaderboard from HuggingFace: {len(df)} rows")
return df
except Exception as e:
print(f"[ERROR] Loading from HuggingFace: {e}")
raise
def _load_leaderboard_from_json(self) -> pd.DataFrame:
"""Load leaderboard from local JSON file"""
json_path = self.json_data_path / "leaderboard.json"
if not json_path.exists():
raise FileNotFoundError(f"Leaderboard JSON not found: {json_path}")
with open(json_path, "r") as f:
data = json.load(f)
df = pd.DataFrame(data)
print(f"[OK] Loaded leaderboard from JSON: {len(df)} rows")
return df
def load_results(self, results_dataset: str) -> pd.DataFrame:
"""
Load results dataset for a specific run
Args:
results_dataset: Dataset reference (e.g., "user/agent-results-gpt4")
Returns:
DataFrame with test case results
"""
cache_key = f"results_{results_dataset}"
if cache_key in self._cache:
return self._cache[cache_key]
# Try HuggingFace first
if self.data_source in ["huggingface", "both"]:
try:
df = self._load_results_from_hf(results_dataset)
self._cache[cache_key] = df
return df
except Exception as e:
print(f"Failed to load results from HuggingFace: {e}")
if self.data_source == "huggingface":
raise
# Fallback to JSON
if self.data_source in ["json", "both"]:
try:
df = self._load_results_from_json(results_dataset)
self._cache[cache_key] = df
return df
except Exception as e:
print(f"Failed to load results from JSON: {e}")
raise
raise ValueError("No valid data source available")
def _load_results_from_hf(self, dataset_id: str) -> pd.DataFrame:
"""Load results from HuggingFace dataset"""
ds = load_dataset(dataset_id, split="train", token=self.hf_token)
df = ds.to_pandas()
print(f"[OK] Loaded results from HuggingFace: {len(df)} rows")
return df
def _load_results_from_json(self, dataset_id: str) -> pd.DataFrame:
"""Load results from local JSON file"""
# Extract filename from dataset ID (e.g., "user/agent-results-gpt4" -> "results_gpt4.json")
filename = dataset_id.split("/")[-1].replace("agent-", "") + ".json"
json_path = self.json_data_path / filename
if not json_path.exists():
raise FileNotFoundError(f"Results JSON not found: {json_path}")
with open(json_path, "r") as f:
data = json.load(f)
df = pd.DataFrame(data)
print(f"[OK] Loaded results from JSON: {len(df)} rows")
return df
def load_traces(self, traces_dataset: str) -> List[Dict[str, Any]]:
"""
Load traces dataset for a specific run
Args:
traces_dataset: Dataset reference (e.g., "user/agent-traces-gpt4")
Returns:
List of trace objects (OpenTelemetry format)
"""
cache_key = f"traces_{traces_dataset}"
if cache_key in self._cache:
return self._cache[cache_key]
# Try HuggingFace first
if self.data_source in ["huggingface", "both"]:
try:
traces = self._load_traces_from_hf(traces_dataset)
self._cache[cache_key] = traces
return traces
except Exception as e:
print(f"Failed to load traces from HuggingFace: {e}")
if self.data_source == "huggingface":
raise
# Fallback to JSON
if self.data_source in ["json", "both"]:
try:
traces = self._load_traces_from_json(traces_dataset)
self._cache[cache_key] = traces
return traces
except Exception as e:
print(f"Failed to load traces from JSON: {e}")
raise
raise ValueError("No valid data source available")
def _load_traces_from_hf(self, dataset_id: str) -> List[Dict[str, Any]]:
"""Load traces from HuggingFace dataset"""
ds = load_dataset(dataset_id, split="train", token=self.hf_token)
traces = ds.to_pandas().to_dict("records")
print(f"[OK] Loaded traces from HuggingFace: {len(traces)} traces")
return traces
def _load_traces_from_json(self, dataset_id: str) -> List[Dict[str, Any]]:
"""Load traces from local JSON file"""
filename = dataset_id.split("/")[-1].replace("agent-", "") + ".json"
json_path = self.json_data_path / filename
if not json_path.exists():
raise FileNotFoundError(f"Traces JSON not found: {json_path}")
with open(json_path, "r") as f:
data = json.load(f)
print(f"[OK] Loaded traces from JSON: {len(data)} traces")
return data
def load_metrics(self, metrics_dataset: str) -> pd.DataFrame:
"""
Load metrics dataset for a specific run (GPU metrics)
Args:
metrics_dataset: Dataset reference (e.g., "user/agent-metrics-gpt4")
Returns:
DataFrame with GPU metrics in flat format (columns: timestamp, gpu_utilization_percent, etc.)
"""
cache_key = f"metrics_{metrics_dataset}"
if cache_key in self._cache:
return self._cache[cache_key]
# Try HuggingFace first
if self.data_source in ["huggingface", "both"]:
try:
metrics = self._load_metrics_from_hf(metrics_dataset)
self._cache[cache_key] = metrics
return metrics
except Exception as e:
print(f"Failed to load metrics from HuggingFace: {e}")
if self.data_source == "huggingface":
raise
# Fallback to JSON
if self.data_source in ["json", "both"]:
try:
metrics = self._load_metrics_from_json(metrics_dataset)
self._cache[cache_key] = metrics
return metrics
except Exception as e:
print(f"Failed to load metrics from JSON: {e}")
# Metrics might not exist for API models, don't raise
print("⚠️ No metrics available (expected for API models)")
return pd.DataFrame()
return pd.DataFrame()
def _load_metrics_from_hf(self, dataset_id: str) -> pd.DataFrame:
"""Load metrics from HuggingFace dataset (flat format)"""
ds = load_dataset(dataset_id, split="train", token=self.hf_token)
df = ds.to_pandas()
# Convert timestamp strings to datetime if needed
if 'timestamp' in df.columns:
df['timestamp'] = pd.to_datetime(df['timestamp'])
print(f"[OK] Loaded metrics from HuggingFace: {len(df)} rows")
print(f" Columns: {list(df.columns)}")
return df
def _load_metrics_from_json(self, dataset_id: str) -> pd.DataFrame:
"""Load metrics from local JSON file"""
filename = dataset_id.split("/")[-1].replace("agent-", "") + ".json"
json_path = self.json_data_path / filename
if not json_path.exists():
# Metrics might not exist for API models
return pd.DataFrame()
with open(json_path, "r") as f:
data = json.load(f)
# Check if it's OpenTelemetry format (nested) or flat format
if isinstance(data, dict) and 'resourceMetrics' in data:
# Legacy OpenTelemetry format - convert to flat format
df = self._convert_otel_to_flat(data)
elif isinstance(data, list):
df = pd.DataFrame(data)
else:
df = pd.DataFrame()
# Convert timestamp strings to datetime if needed
if 'timestamp' in df.columns and not df.empty:
df['timestamp'] = pd.to_datetime(df['timestamp'])
print(f"[OK] Loaded metrics from JSON: {len(df)} rows")
return df
def _convert_otel_to_flat(self, otel_data: Dict[str, Any]) -> pd.DataFrame:
"""Convert OpenTelemetry resourceMetrics format to flat DataFrame"""
rows = []
for resource_metric in otel_data.get('resourceMetrics', []):
for scope_metric in resource_metric.get('scopeMetrics', []):
for metric in scope_metric.get('metrics', []):
metric_name = metric.get('name', '')
# Handle gauge metrics
if 'gauge' in metric:
for data_point in metric['gauge'].get('dataPoints', []):
row = self._extract_data_point(metric_name, data_point, metric.get('unit', ''))
if row:
rows.append(row)
# Handle sum metrics (like CO2)
elif 'sum' in metric:
for data_point in metric['sum'].get('dataPoints', []):
row = self._extract_data_point(metric_name, data_point, metric.get('unit', ''))
if row:
rows.append(row)
return pd.DataFrame(rows)
def _extract_data_point(self, metric_name: str, data_point: Dict, unit: str) -> Optional[Dict[str, Any]]:
"""Extract a single data point from OpenTelemetry format to flat row"""
# Get GPU attributes
gpu_id = None
gpu_name = None
for attr in data_point.get('attributes', []):
if attr.get('key') == 'gpu_id':
gpu_id = attr.get('value', {}).get('stringValue', '')
elif attr.get('key') == 'gpu_name':
gpu_name = attr.get('value', {}).get('stringValue', '')
# Get value
value = None
if 'asInt' in data_point and data_point['asInt'] is not None:
value = int(data_point['asInt'])
elif 'asDouble' in data_point and data_point['asDouble'] is not None:
value = float(data_point['asDouble'])
# Get timestamp
timestamp_nano = data_point.get('timeUnixNano', '')
if timestamp_nano:
timestamp_sec = int(timestamp_nano) / 1e9
timestamp = pd.to_datetime(timestamp_sec, unit='s')
else:
timestamp = None
# Map metric names to column names
metric_col_map = {
'gen_ai.gpu.utilization': 'gpu_utilization_percent',
'gen_ai.gpu.memory.used': 'gpu_memory_used_mib',
'gen_ai.gpu.temperature': 'gpu_temperature_celsius',
'gen_ai.gpu.power': 'gpu_power_watts',
'gen_ai.co2.emissions': 'co2_emissions_gco2e'
}
return {
'timestamp': timestamp,
'timestamp_unix_nano': timestamp_nano,
'gpu_id': gpu_id,
'gpu_name': gpu_name,
'metric_name': metric_name,
'value': value,
'unit': unit
}
def get_trace_by_id(self, traces_dataset: str, trace_id: str) -> Optional[Dict[str, Any]]:
"""
Get a specific trace by ID
Args:
traces_dataset: Dataset reference
trace_id: Trace ID to find
Returns:
Trace object or None if not found
"""
traces = self.load_traces(traces_dataset)
for trace in traces:
if trace.get("trace_id") == trace_id or trace.get("traceId") == trace_id:
# Ensure spans is a proper list (not numpy array or pandas Series)
if "spans" in trace:
spans = trace["spans"]
if hasattr(spans, 'tolist'):
trace["spans"] = spans.tolist()
elif not isinstance(spans, list):
trace["spans"] = list(spans) if spans is not None else []
return trace
return None
def clear_cache(self) -> None:
"""Clear the internal cache"""
self._cache.clear()
print("[OK] Cache cleared")
def refresh_leaderboard(self) -> pd.DataFrame:
"""Refresh leaderboard data (clear cache and reload)"""
if "leaderboard" in self._cache:
del self._cache["leaderboard"]
return self.load_leaderboard()
def create_data_loader_from_env() -> DataLoader:
"""
Create DataLoader instance from environment variables
Returns:
Configured DataLoader instance
"""
data_source = os.getenv("DATA_SOURCE", "both")
return DataLoader(
data_source=data_source,
json_data_path=os.getenv("JSON_DATA_PATH"),
leaderboard_dataset=os.getenv("LEADERBOARD_DATASET"),
hf_token=os.getenv("HF_TOKEN")
)
|