Spaces:
Running
Running
Commit
Β·
315aa68
1
Parent(s):
5930644
Wire MCP server tools to UI screens
Browse files- Add mcp_helpers.py with sync/async functions to call MCP server tools
- Wire analyze_leaderboard to Leaderboard screen AI Insights tab
- Wire debug_trace to Trace Detail screen with Q&A interface
- Wire compare_runs to Compare screen AI Insights tab
- Wire analyze_results to Run Detail screen AI Insights tab
- Fix API endpoint names to match MCP server (/run_* endpoints)
- Fix parameter names for all MCP tool calls
- Update all navigation paths to set global state for MCP tools
- Parse composite run IDs for compare_runs tool
- app.py +245 -28
- screens/compare.py +21 -0
- screens/mcp_helpers.py +245 -0
app.py
CHANGED
|
@@ -59,6 +59,12 @@ from screens.chat import (
|
|
| 59 |
on_clear_chat,
|
| 60 |
on_quick_action
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
from utils.navigation import Navigator, Screen
|
| 63 |
|
| 64 |
|
|
@@ -162,7 +168,7 @@ def create_trace_metadata_html(trace_data: dict) -> str:
|
|
| 162 |
|
| 163 |
def on_test_case_select(evt: gr.SelectData, df):
|
| 164 |
"""Handle test case selection in run detail - navigate to trace detail"""
|
| 165 |
-
global current_selected_run, current_selected_trace
|
| 166 |
|
| 167 |
print(f"[DEBUG] on_test_case_select called with index: {evt.index}")
|
| 168 |
|
|
@@ -190,6 +196,11 @@ def on_test_case_select(evt: gr.SelectData, df):
|
|
| 190 |
gr.Warning("No traces dataset found in current run")
|
| 191 |
return {}
|
| 192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
trace_data = data_loader.get_trace_by_id(traces_dataset, trace_id)
|
| 194 |
|
| 195 |
if not trace_data:
|
|
@@ -690,48 +701,187 @@ def generate_card(top_n):
|
|
| 690 |
|
| 691 |
|
| 692 |
def generate_insights():
|
| 693 |
-
"""Generate AI insights summary"""
|
| 694 |
try:
|
|
|
|
| 695 |
df = data_loader.load_leaderboard()
|
| 696 |
|
| 697 |
-
if df
|
| 698 |
-
return "## π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 699 |
|
| 700 |
-
|
| 701 |
-
most_cost_effective = df.loc[(df['success_rate'] / (df['total_cost_usd'] + 0.0001)).idxmax()]
|
| 702 |
-
fastest = df.loc[df['avg_duration_ms'].idxmin()]
|
| 703 |
|
| 704 |
-
|
| 705 |
-
|
|
|
|
|
|
|
|
|
|
| 706 |
|
| 707 |
-
**Total Runs:** {len(df)}
|
| 708 |
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
- π° **Most Cost-Effective:** {most_cost_effective['model']} ({most_cost_effective['success_rate']:.1f}% @ ${most_cost_effective['total_cost_usd']:.4f})
|
| 712 |
-
- β‘ **Fastest:** {fastest['model']} ({fastest['avg_duration_ms']:.0f}ms avg)
|
| 713 |
|
| 714 |
-
**Key Trends:**
|
| 715 |
-
- Average Success Rate: {df['success_rate'].mean():.1f}%
|
| 716 |
-
- Average Cost: ${df['total_cost_usd'].mean():.4f}
|
| 717 |
-
- Average Duration: {df['avg_duration_ms'].mean():.0f}ms
|
| 718 |
|
| 719 |
-
|
|
|
|
|
|
|
| 720 |
|
| 721 |
-
|
| 722 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 723 |
|
| 724 |
return insights
|
|
|
|
| 725 |
except Exception as e:
|
| 726 |
-
print(f"[ERROR]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
import traceback
|
| 728 |
traceback.print_exc()
|
| 729 |
-
return f"
|
| 730 |
|
| 731 |
|
| 732 |
def on_html_table_row_click(row_index_str):
|
| 733 |
"""Handle row click from HTML table via JavaScript (hidden textbox bridge)"""
|
| 734 |
-
global current_selected_run, leaderboard_df_cache
|
| 735 |
|
| 736 |
print(f"[DEBUG] on_html_table_row_click called with: '{row_index_str}'")
|
| 737 |
|
|
@@ -795,6 +945,10 @@ def on_html_table_row_click(row_index_str):
|
|
| 795 |
selected_row_index: gr.update(value="")
|
| 796 |
}
|
| 797 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
results_df = data_loader.load_results(results_dataset)
|
| 799 |
|
| 800 |
# Generate performance chart
|
|
@@ -909,7 +1063,7 @@ def on_html_table_row_click(row_index_str):
|
|
| 909 |
|
| 910 |
def load_run_detail(run_id):
|
| 911 |
"""Load run detail data including results dataset"""
|
| 912 |
-
global current_selected_run, leaderboard_df_cache
|
| 913 |
|
| 914 |
try:
|
| 915 |
# Find run in cache
|
|
@@ -922,6 +1076,10 @@ def load_run_detail(run_id):
|
|
| 922 |
if not results_dataset:
|
| 923 |
return pd.DataFrame(), f"# Error\n\nNo results dataset found for this run", ""
|
| 924 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 925 |
results_df = data_loader.load_results(results_dataset)
|
| 926 |
|
| 927 |
# Generate performance chart
|
|
@@ -994,7 +1152,7 @@ def load_run_detail(run_id):
|
|
| 994 |
# Screen 3 (Run Detail) event handlers
|
| 995 |
def on_drilldown_select(evt: gr.SelectData, df):
|
| 996 |
"""Handle row selection from DrillDown table - EXACT COPY from MockTraceMind"""
|
| 997 |
-
global current_selected_run, current_drilldown_df
|
| 998 |
|
| 999 |
try:
|
| 1000 |
# Get selected run - use currently displayed dataframe (filtered/sorted)
|
|
@@ -1030,6 +1188,10 @@ def on_drilldown_select(evt: gr.SelectData, df):
|
|
| 1030 |
run_card_html: gr.update()
|
| 1031 |
}
|
| 1032 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1033 |
results_df = data_loader.load_results(results_dataset)
|
| 1034 |
|
| 1035 |
# Generate performance chart
|
|
@@ -1145,7 +1307,7 @@ def on_drilldown_select(evt: gr.SelectData, df):
|
|
| 1145 |
|
| 1146 |
def on_html_leaderboard_select(evt: gr.SelectData):
|
| 1147 |
"""Handle row selection from HTMLPlus leaderboard (By Model tab)"""
|
| 1148 |
-
global current_selected_run, leaderboard_df_cache
|
| 1149 |
|
| 1150 |
try:
|
| 1151 |
# HTMLPlus returns data attributes from the selected row
|
|
@@ -1247,6 +1409,10 @@ def on_html_leaderboard_select(evt: gr.SelectData):
|
|
| 1247 |
run_gpu_metrics_json: gr.update()
|
| 1248 |
}
|
| 1249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1250 |
results_df = data_loader.load_results(results_dataset)
|
| 1251 |
|
| 1252 |
# Generate performance chart
|
|
@@ -1813,6 +1979,37 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 1813 |
with gr.TabItem("π Raw Metrics Data"):
|
| 1814 |
run_gpu_metrics_json = gr.JSON(label="GPU Metrics Data")
|
| 1815 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1816 |
# Screen 4: Trace Detail with Sub-tabs
|
| 1817 |
with gr.Column(visible=False) as trace_detail_screen:
|
| 1818 |
with gr.Row():
|
|
@@ -2161,7 +2358,7 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2161 |
|
| 2162 |
# Compare button handler
|
| 2163 |
compare_components['compare_button'].click(
|
| 2164 |
-
fn=lambda run_a, run_b:
|
| 2165 |
inputs=[
|
| 2166 |
compare_components['compare_run_a_dropdown'],
|
| 2167 |
compare_components['compare_run_b_dropdown']
|
|
@@ -2177,6 +2374,20 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2177 |
]
|
| 2178 |
)
|
| 2179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2180 |
# Back to leaderboard from compare
|
| 2181 |
compare_components['back_to_leaderboard_btn'].click(
|
| 2182 |
fn=navigate_to_leaderboard,
|
|
@@ -2236,6 +2447,12 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2236 |
outputs=[run_detail_screen, trace_detail_screen]
|
| 2237 |
)
|
| 2238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2239 |
|
| 2240 |
# HTML table row click handler (JavaScript bridge via hidden textbox)
|
| 2241 |
selected_row_index.change(
|
|
|
|
| 59 |
on_clear_chat,
|
| 60 |
on_quick_action
|
| 61 |
)
|
| 62 |
+
from screens.mcp_helpers import (
|
| 63 |
+
call_analyze_leaderboard_sync,
|
| 64 |
+
call_debug_trace_sync,
|
| 65 |
+
call_compare_runs_sync,
|
| 66 |
+
call_analyze_results_sync
|
| 67 |
+
)
|
| 68 |
from utils.navigation import Navigator, Screen
|
| 69 |
|
| 70 |
|
|
|
|
| 168 |
|
| 169 |
def on_test_case_select(evt: gr.SelectData, df):
|
| 170 |
"""Handle test case selection in run detail - navigate to trace detail"""
|
| 171 |
+
global current_selected_run, current_selected_trace, _current_trace_info
|
| 172 |
|
| 173 |
print(f"[DEBUG] on_test_case_select called with index: {evt.index}")
|
| 174 |
|
|
|
|
| 196 |
gr.Warning("No traces dataset found in current run")
|
| 197 |
return {}
|
| 198 |
|
| 199 |
+
# Update global trace info for MCP debug_trace tool
|
| 200 |
+
_current_trace_info["trace_id"] = trace_id
|
| 201 |
+
_current_trace_info["traces_repo"] = traces_dataset
|
| 202 |
+
print(f"[MCP] Updated trace info for debug_trace: trace_id={trace_id}, traces_repo={traces_dataset}")
|
| 203 |
+
|
| 204 |
trace_data = data_loader.get_trace_by_id(traces_dataset, trace_id)
|
| 205 |
|
| 206 |
if not trace_data:
|
|
|
|
| 701 |
|
| 702 |
|
| 703 |
def generate_insights():
|
| 704 |
+
"""Generate AI insights summary using MCP server"""
|
| 705 |
try:
|
| 706 |
+
# Load leaderboard to check if data exists
|
| 707 |
df = data_loader.load_leaderboard()
|
| 708 |
|
| 709 |
+
if df is None or df.empty:
|
| 710 |
+
return "## π AI Insights\n\nNo leaderboard data available. Please refresh the data."
|
| 711 |
+
|
| 712 |
+
# Call MCP server's analyze_leaderboard tool
|
| 713 |
+
print("[MCP] Calling analyze_leaderboard MCP tool...")
|
| 714 |
+
insights = call_analyze_leaderboard_sync(
|
| 715 |
+
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
|
| 716 |
+
metric_focus="overall",
|
| 717 |
+
time_range="last_week",
|
| 718 |
+
top_n=5
|
| 719 |
+
)
|
| 720 |
|
| 721 |
+
return insights
|
|
|
|
|
|
|
| 722 |
|
| 723 |
+
except Exception as e:
|
| 724 |
+
print(f"[ERROR] generate_insights: {e}")
|
| 725 |
+
import traceback
|
| 726 |
+
traceback.print_exc()
|
| 727 |
+
return f"## π AI Insights\n\nβ **Error generating insights**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Leaderboard dataset is accessible"
|
| 728 |
|
|
|
|
| 729 |
|
| 730 |
+
# Global variable to store current trace info for debug_trace MCP tool
|
| 731 |
+
_current_trace_info = {"trace_id": None, "traces_repo": None}
|
|
|
|
|
|
|
| 732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 733 |
|
| 734 |
+
def ask_about_trace(question: str) -> str:
|
| 735 |
+
"""
|
| 736 |
+
Call debug_trace MCP tool to answer questions about current trace
|
| 737 |
|
| 738 |
+
Args:
|
| 739 |
+
question: User's question about the trace
|
| 740 |
+
|
| 741 |
+
Returns:
|
| 742 |
+
AI-powered answer from MCP server
|
| 743 |
+
"""
|
| 744 |
+
global _current_trace_info
|
| 745 |
+
|
| 746 |
+
try:
|
| 747 |
+
if not _current_trace_info["trace_id"] or not _current_trace_info["traces_repo"]:
|
| 748 |
+
return "β **No trace selected**\n\nPlease navigate to a trace first by clicking on a test case from the Run Detail screen."
|
| 749 |
+
|
| 750 |
+
if not question or question.strip() == "":
|
| 751 |
+
return "β **Please enter a question**\n\nFor example:\n- Why was the tool called twice?\n- Which step took the most time?\n- Why did this test fail?"
|
| 752 |
+
|
| 753 |
+
print(f"[MCP] Calling debug_trace MCP tool for trace_id: {_current_trace_info['trace_id']}")
|
| 754 |
+
|
| 755 |
+
# Call MCP server's debug_trace tool
|
| 756 |
+
answer = call_debug_trace_sync(
|
| 757 |
+
trace_id=_current_trace_info["trace_id"],
|
| 758 |
+
traces_repo=_current_trace_info["traces_repo"],
|
| 759 |
+
question=question
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
return answer
|
| 763 |
+
|
| 764 |
+
except Exception as e:
|
| 765 |
+
print(f"[ERROR] ask_about_trace: {e}")
|
| 766 |
+
import traceback
|
| 767 |
+
traceback.print_exc()
|
| 768 |
+
return f"β **Error asking about trace**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Trace data is accessible"
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
# Global variable to store current comparison for compare_runs MCP tool
|
| 772 |
+
_current_comparison = {"run_id_1": None, "run_id_2": None}
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
def handle_compare_runs(run_a_id: str, run_b_id: str, leaderboard_df, components):
|
| 776 |
+
"""
|
| 777 |
+
Wrapper function to handle run comparison and update global state
|
| 778 |
+
|
| 779 |
+
Args:
|
| 780 |
+
run_a_id: ID of first run (composite key: run_id|timestamp)
|
| 781 |
+
run_b_id: ID of second run (composite key: run_id|timestamp)
|
| 782 |
+
leaderboard_df: Full leaderboard dataframe
|
| 783 |
+
components: Dictionary of Gradio components
|
| 784 |
+
|
| 785 |
+
Returns:
|
| 786 |
+
Dictionary of component updates from on_compare_runs
|
| 787 |
+
"""
|
| 788 |
+
global _current_comparison
|
| 789 |
+
|
| 790 |
+
# Parse composite keys (run_id|timestamp) to extract just the run_id
|
| 791 |
+
run_a_parts = run_a_id.split('|') if run_a_id else []
|
| 792 |
+
run_b_parts = run_b_id.split('|') if run_b_id else []
|
| 793 |
+
|
| 794 |
+
# Extract just the run_id portion for MCP server
|
| 795 |
+
run_a_id_parsed = run_a_parts[0] if len(run_a_parts) >= 1 else run_a_id
|
| 796 |
+
run_b_id_parsed = run_b_parts[0] if len(run_b_parts) >= 1 else run_b_id
|
| 797 |
+
|
| 798 |
+
# Update global state for MCP compare_runs tool
|
| 799 |
+
_current_comparison["run_id_1"] = run_a_id_parsed
|
| 800 |
+
_current_comparison["run_id_2"] = run_b_id_parsed
|
| 801 |
+
print(f"[MCP] Updated comparison state: {run_a_id_parsed} vs {run_b_id_parsed}")
|
| 802 |
+
|
| 803 |
+
# Call the original compare function (with original composite keys)
|
| 804 |
+
from screens.compare import on_compare_runs
|
| 805 |
+
return on_compare_runs(run_a_id, run_b_id, leaderboard_df, components)
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
def generate_ai_comparison(comparison_focus: str) -> str:
|
| 809 |
+
"""
|
| 810 |
+
Call compare_runs MCP tool to generate AI insights about run comparison
|
| 811 |
+
|
| 812 |
+
Args:
|
| 813 |
+
comparison_focus: Focus area - "comprehensive", "cost", "performance", or "eco_friendly"
|
| 814 |
+
|
| 815 |
+
Returns:
|
| 816 |
+
AI-powered comparison analysis from MCP server
|
| 817 |
+
"""
|
| 818 |
+
global _current_comparison
|
| 819 |
+
|
| 820 |
+
try:
|
| 821 |
+
if not _current_comparison["run_id_1"] or not _current_comparison["run_id_2"]:
|
| 822 |
+
return "β **No runs selected for comparison**\n\nPlease select two runs and click 'Compare Selected Runs' first."
|
| 823 |
+
|
| 824 |
+
print(f"[MCP] Calling compare_runs MCP tool: {_current_comparison['run_id_1']} vs {_current_comparison['run_id_2']}")
|
| 825 |
+
|
| 826 |
+
# Call MCP server's compare_runs tool
|
| 827 |
+
insights = call_compare_runs_sync(
|
| 828 |
+
run_id_1=_current_comparison["run_id_1"],
|
| 829 |
+
run_id_2=_current_comparison["run_id_2"],
|
| 830 |
+
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
|
| 831 |
+
comparison_focus=comparison_focus
|
| 832 |
+
)
|
| 833 |
|
| 834 |
return insights
|
| 835 |
+
|
| 836 |
except Exception as e:
|
| 837 |
+
print(f"[ERROR] generate_ai_comparison: {e}")
|
| 838 |
+
import traceback
|
| 839 |
+
traceback.print_exc()
|
| 840 |
+
return f"β **Error generating AI comparison**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Leaderboard dataset is accessible"
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
# Global variable to store current run's results dataset for analyze_results MCP tool
|
| 844 |
+
_current_run_results_repo = None
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
def generate_run_ai_insights(focus_area: str, max_rows: int) -> str:
|
| 848 |
+
"""
|
| 849 |
+
Call analyze_results MCP tool to generate AI insights about run results
|
| 850 |
+
|
| 851 |
+
Args:
|
| 852 |
+
focus_area: Focus area - "overall", "failures", "performance", or "tools"
|
| 853 |
+
max_rows: Maximum number of test cases to analyze
|
| 854 |
+
|
| 855 |
+
Returns:
|
| 856 |
+
AI-powered results analysis from MCP server
|
| 857 |
+
"""
|
| 858 |
+
global _current_run_results_repo
|
| 859 |
+
|
| 860 |
+
try:
|
| 861 |
+
if not _current_run_results_repo:
|
| 862 |
+
return "β **No run selected**\n\nPlease navigate to a run detail first by clicking on a run from the Leaderboard screen."
|
| 863 |
+
|
| 864 |
+
print(f"[MCP] Calling analyze_results MCP tool for: {_current_run_results_repo}")
|
| 865 |
+
|
| 866 |
+
# Call MCP server's analyze_results tool
|
| 867 |
+
insights = call_analyze_results_sync(
|
| 868 |
+
results_repo=_current_run_results_repo,
|
| 869 |
+
focus_area=focus_area,
|
| 870 |
+
max_rows=max_rows
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
return insights
|
| 874 |
+
|
| 875 |
+
except Exception as e:
|
| 876 |
+
print(f"[ERROR] generate_run_ai_insights: {e}")
|
| 877 |
import traceback
|
| 878 |
traceback.print_exc()
|
| 879 |
+
return f"β **Error generating run insights**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Results dataset is accessible"
|
| 880 |
|
| 881 |
|
| 882 |
def on_html_table_row_click(row_index_str):
|
| 883 |
"""Handle row click from HTML table via JavaScript (hidden textbox bridge)"""
|
| 884 |
+
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
|
| 885 |
|
| 886 |
print(f"[DEBUG] on_html_table_row_click called with: '{row_index_str}'")
|
| 887 |
|
|
|
|
| 945 |
selected_row_index: gr.update(value="")
|
| 946 |
}
|
| 947 |
|
| 948 |
+
# Update global state for MCP analyze_results tool
|
| 949 |
+
_current_run_results_repo = results_dataset
|
| 950 |
+
print(f"[MCP] Updated results repo for analyze_results: {results_dataset}")
|
| 951 |
+
|
| 952 |
results_df = data_loader.load_results(results_dataset)
|
| 953 |
|
| 954 |
# Generate performance chart
|
|
|
|
| 1063 |
|
| 1064 |
def load_run_detail(run_id):
|
| 1065 |
"""Load run detail data including results dataset"""
|
| 1066 |
+
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
|
| 1067 |
|
| 1068 |
try:
|
| 1069 |
# Find run in cache
|
|
|
|
| 1076 |
if not results_dataset:
|
| 1077 |
return pd.DataFrame(), f"# Error\n\nNo results dataset found for this run", ""
|
| 1078 |
|
| 1079 |
+
# Update global state for MCP analyze_results tool
|
| 1080 |
+
_current_run_results_repo = results_dataset
|
| 1081 |
+
print(f"[MCP] Updated results repo for analyze_results (load_run_detail): {results_dataset}")
|
| 1082 |
+
|
| 1083 |
results_df = data_loader.load_results(results_dataset)
|
| 1084 |
|
| 1085 |
# Generate performance chart
|
|
|
|
| 1152 |
# Screen 3 (Run Detail) event handlers
|
| 1153 |
def on_drilldown_select(evt: gr.SelectData, df):
|
| 1154 |
"""Handle row selection from DrillDown table - EXACT COPY from MockTraceMind"""
|
| 1155 |
+
global current_selected_run, current_drilldown_df, _current_run_results_repo
|
| 1156 |
|
| 1157 |
try:
|
| 1158 |
# Get selected run - use currently displayed dataframe (filtered/sorted)
|
|
|
|
| 1188 |
run_card_html: gr.update()
|
| 1189 |
}
|
| 1190 |
|
| 1191 |
+
# Update global state for MCP analyze_results tool
|
| 1192 |
+
_current_run_results_repo = results_dataset
|
| 1193 |
+
print(f"[MCP] Updated results repo for analyze_results (on_drilldown_select): {results_dataset}")
|
| 1194 |
+
|
| 1195 |
results_df = data_loader.load_results(results_dataset)
|
| 1196 |
|
| 1197 |
# Generate performance chart
|
|
|
|
| 1307 |
|
| 1308 |
def on_html_leaderboard_select(evt: gr.SelectData):
|
| 1309 |
"""Handle row selection from HTMLPlus leaderboard (By Model tab)"""
|
| 1310 |
+
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
|
| 1311 |
|
| 1312 |
try:
|
| 1313 |
# HTMLPlus returns data attributes from the selected row
|
|
|
|
| 1409 |
run_gpu_metrics_json: gr.update()
|
| 1410 |
}
|
| 1411 |
|
| 1412 |
+
# Update global state for MCP analyze_results tool
|
| 1413 |
+
_current_run_results_repo = results_dataset
|
| 1414 |
+
print(f"[MCP] Updated results repo for analyze_results (on_html_leaderboard_select): {results_dataset}")
|
| 1415 |
+
|
| 1416 |
results_df = data_loader.load_results(results_dataset)
|
| 1417 |
|
| 1418 |
# Generate performance chart
|
|
|
|
| 1979 |
with gr.TabItem("π Raw Metrics Data"):
|
| 1980 |
run_gpu_metrics_json = gr.JSON(label="GPU Metrics Data")
|
| 1981 |
|
| 1982 |
+
with gr.TabItem("π€ AI Insights"):
|
| 1983 |
+
gr.Markdown("### AI-Powered Results Analysis")
|
| 1984 |
+
gr.Markdown("*Get intelligent insights about test results and optimization recommendations using the MCP server*")
|
| 1985 |
+
|
| 1986 |
+
with gr.Row():
|
| 1987 |
+
with gr.Column(scale=1):
|
| 1988 |
+
run_analysis_focus = gr.Dropdown(
|
| 1989 |
+
label="Analysis Focus",
|
| 1990 |
+
choices=["overall", "failures", "performance", "tools"],
|
| 1991 |
+
value="overall",
|
| 1992 |
+
info="Choose what aspect to focus on in the AI analysis"
|
| 1993 |
+
)
|
| 1994 |
+
run_max_rows = gr.Slider(
|
| 1995 |
+
label="Max Test Cases to Analyze",
|
| 1996 |
+
minimum=10,
|
| 1997 |
+
maximum=200,
|
| 1998 |
+
value=100,
|
| 1999 |
+
step=10,
|
| 2000 |
+
info="Limit analysis to reduce processing time"
|
| 2001 |
+
)
|
| 2002 |
+
with gr.Column(scale=1):
|
| 2003 |
+
generate_run_ai_insights_btn = gr.Button(
|
| 2004 |
+
"π€ Generate AI Insights",
|
| 2005 |
+
variant="primary",
|
| 2006 |
+
size="lg"
|
| 2007 |
+
)
|
| 2008 |
+
|
| 2009 |
+
run_ai_insights = gr.Markdown(
|
| 2010 |
+
"*Click 'Generate AI Insights' to get intelligent analysis powered by the MCP server*"
|
| 2011 |
+
)
|
| 2012 |
+
|
| 2013 |
# Screen 4: Trace Detail with Sub-tabs
|
| 2014 |
with gr.Column(visible=False) as trace_detail_screen:
|
| 2015 |
with gr.Row():
|
|
|
|
| 2358 |
|
| 2359 |
# Compare button handler
|
| 2360 |
compare_components['compare_button'].click(
|
| 2361 |
+
fn=lambda run_a, run_b: handle_compare_runs(run_a, run_b, leaderboard_df_cache, compare_components),
|
| 2362 |
inputs=[
|
| 2363 |
compare_components['compare_run_a_dropdown'],
|
| 2364 |
compare_components['compare_run_b_dropdown']
|
|
|
|
| 2374 |
]
|
| 2375 |
)
|
| 2376 |
|
| 2377 |
+
# Wire up AI comparison insights button (MCP compare_runs tool)
|
| 2378 |
+
compare_components['generate_ai_comparison_btn'].click(
|
| 2379 |
+
fn=generate_ai_comparison,
|
| 2380 |
+
inputs=[compare_components['comparison_focus']],
|
| 2381 |
+
outputs=[compare_components['ai_comparison_insights']]
|
| 2382 |
+
)
|
| 2383 |
+
|
| 2384 |
+
# Wire up run AI insights button (MCP analyze_results tool)
|
| 2385 |
+
generate_run_ai_insights_btn.click(
|
| 2386 |
+
fn=generate_run_ai_insights,
|
| 2387 |
+
inputs=[run_analysis_focus, run_max_rows],
|
| 2388 |
+
outputs=[run_ai_insights]
|
| 2389 |
+
)
|
| 2390 |
+
|
| 2391 |
# Back to leaderboard from compare
|
| 2392 |
compare_components['back_to_leaderboard_btn'].click(
|
| 2393 |
fn=navigate_to_leaderboard,
|
|
|
|
| 2447 |
outputs=[run_detail_screen, trace_detail_screen]
|
| 2448 |
)
|
| 2449 |
|
| 2450 |
+
# Wire up trace AI question button (MCP debug_trace tool)
|
| 2451 |
+
trace_ask_btn.click(
|
| 2452 |
+
fn=ask_about_trace,
|
| 2453 |
+
inputs=[trace_question],
|
| 2454 |
+
outputs=[trace_answer]
|
| 2455 |
+
)
|
| 2456 |
|
| 2457 |
# HTML table row click handler (JavaScript bridge via hidden textbox)
|
| 2458 |
selected_row_index.change(
|
screens/compare.py
CHANGED
|
@@ -307,6 +307,27 @@ def create_compare_ui():
|
|
| 307 |
elem_id="comparison-card-html"
|
| 308 |
)
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
components['comparison_output'] = comparison_output
|
| 311 |
|
| 312 |
return compare_screen, components
|
|
|
|
| 307 |
elem_id="comparison-card-html"
|
| 308 |
)
|
| 309 |
|
| 310 |
+
with gr.TabItem("π€ AI Insights"):
|
| 311 |
+
gr.Markdown("### AI-Powered Comparison Analysis")
|
| 312 |
+
gr.Markdown("*Get intelligent insights about the differences between these runs using the MCP server*")
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
components['comparison_focus'] = gr.Dropdown(
|
| 316 |
+
label="Analysis Focus",
|
| 317 |
+
choices=["comprehensive", "cost", "performance", "eco_friendly"],
|
| 318 |
+
value="comprehensive",
|
| 319 |
+
info="Choose what aspect to focus on in the AI analysis"
|
| 320 |
+
)
|
| 321 |
+
components['generate_ai_comparison_btn'] = gr.Button(
|
| 322 |
+
"π€ Generate AI Insights",
|
| 323 |
+
variant="primary",
|
| 324 |
+
size="lg"
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
components['ai_comparison_insights'] = gr.Markdown(
|
| 328 |
+
"*Click 'Generate AI Insights' to get intelligent analysis powered by the MCP server*"
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
components['comparison_output'] = comparison_output
|
| 332 |
|
| 333 |
return compare_screen, components
|
screens/mcp_helpers.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MCP Helper Functions for TraceMind-AI Screens
|
| 3 |
+
Provides simplified interfaces to call MCP server tools from various screens
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from gradio_client import Client
|
| 8 |
+
from typing import Optional, Dict, Any
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# MCP Server URL (from environment or default)
|
| 13 |
+
MCP_SERVER_URL = os.getenv(
|
| 14 |
+
"MCP_SERVER_URL",
|
| 15 |
+
"https://mcp-1st-birthday-tracemind-mcp-server.hf.space/"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_mcp_client() -> Client:
|
| 20 |
+
"""
|
| 21 |
+
Get Gradio client for MCP server
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
gradio_client.Client instance
|
| 25 |
+
"""
|
| 26 |
+
return Client(MCP_SERVER_URL)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
async def call_analyze_leaderboard(
|
| 30 |
+
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
|
| 31 |
+
metric_focus: str = "overall",
|
| 32 |
+
time_range: str = "last_week",
|
| 33 |
+
top_n: int = 5
|
| 34 |
+
) -> str:
|
| 35 |
+
"""
|
| 36 |
+
Call the analyze_leaderboard MCP tool
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
leaderboard_repo: HuggingFace dataset repository
|
| 40 |
+
metric_focus: Focus area - "overall", "accuracy", "cost", "latency", or "co2"
|
| 41 |
+
time_range: Time range - "last_week", "last_month", or "all_time"
|
| 42 |
+
top_n: Number of top models to highlight (3-10)
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
Markdown-formatted analysis from Gemini
|
| 46 |
+
"""
|
| 47 |
+
try:
|
| 48 |
+
client = get_mcp_client()
|
| 49 |
+
result = client.predict(
|
| 50 |
+
repo=leaderboard_repo,
|
| 51 |
+
metric=metric_focus,
|
| 52 |
+
time_range=time_range,
|
| 53 |
+
top_n=top_n,
|
| 54 |
+
api_name="/run_analyze_leaderboard"
|
| 55 |
+
)
|
| 56 |
+
return result
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"β **Error calling analyze_leaderboard**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- API parameters are correct"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
async def call_debug_trace(
|
| 62 |
+
trace_id: str,
|
| 63 |
+
traces_repo: str,
|
| 64 |
+
question: str = "Analyze this trace and explain what happened"
|
| 65 |
+
) -> str:
|
| 66 |
+
"""
|
| 67 |
+
Call the debug_trace MCP tool
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
trace_id: Unique identifier for the trace
|
| 71 |
+
traces_repo: HuggingFace dataset repository with trace data
|
| 72 |
+
question: Specific question about the trace
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
Markdown-formatted debug analysis from Gemini
|
| 76 |
+
"""
|
| 77 |
+
try:
|
| 78 |
+
client = get_mcp_client()
|
| 79 |
+
result = client.predict(
|
| 80 |
+
trace_id_val=trace_id,
|
| 81 |
+
traces_repo_val=traces_repo,
|
| 82 |
+
question_val=question,
|
| 83 |
+
api_name="/run_debug_trace"
|
| 84 |
+
)
|
| 85 |
+
return result
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return f"β **Error calling debug_trace**: {str(e)}\n\nPlease check:\n- Trace ID exists in dataset\n- Traces repository is accessible\n- MCP server is running"
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
async def call_compare_runs(
|
| 91 |
+
run_id_1: str,
|
| 92 |
+
run_id_2: str,
|
| 93 |
+
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
|
| 94 |
+
comparison_focus: str = "comprehensive"
|
| 95 |
+
) -> str:
|
| 96 |
+
"""
|
| 97 |
+
Call the compare_runs MCP tool
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
run_id_1: First run ID from leaderboard
|
| 101 |
+
run_id_2: Second run ID to compare against
|
| 102 |
+
leaderboard_repo: HuggingFace dataset repository
|
| 103 |
+
comparison_focus: Focus area - "comprehensive", "cost", "performance", or "eco_friendly"
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
Markdown-formatted comparison analysis from Gemini
|
| 107 |
+
"""
|
| 108 |
+
try:
|
| 109 |
+
client = get_mcp_client()
|
| 110 |
+
result = client.predict(
|
| 111 |
+
run_id_1=run_id_1,
|
| 112 |
+
run_id_2=run_id_2,
|
| 113 |
+
focus=comparison_focus,
|
| 114 |
+
repo=leaderboard_repo,
|
| 115 |
+
api_name="/run_compare_runs"
|
| 116 |
+
)
|
| 117 |
+
return result
|
| 118 |
+
except Exception as e:
|
| 119 |
+
return f"β **Error calling compare_runs**: {str(e)}\n\nPlease check:\n- Both run IDs exist in leaderboard\n- MCP server is running\n- Network connectivity"
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
async def call_analyze_results(
|
| 123 |
+
results_repo: str,
|
| 124 |
+
focus_area: str = "overall",
|
| 125 |
+
max_rows: int = 100
|
| 126 |
+
) -> str:
|
| 127 |
+
"""
|
| 128 |
+
Call the analyze_results MCP tool
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
results_repo: HuggingFace dataset repository with results data
|
| 132 |
+
focus_area: Focus area - "overall", "failures", "performance", or "tools"
|
| 133 |
+
max_rows: Maximum number of test cases to analyze
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Markdown-formatted results analysis from Gemini
|
| 137 |
+
"""
|
| 138 |
+
try:
|
| 139 |
+
client = get_mcp_client()
|
| 140 |
+
result = client.predict(
|
| 141 |
+
repo=results_repo,
|
| 142 |
+
focus=focus_area,
|
| 143 |
+
max_rows=max_rows,
|
| 144 |
+
api_name="/run_analyze_results"
|
| 145 |
+
)
|
| 146 |
+
return result
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return f"β **Error calling analyze_results**: {str(e)}\n\nPlease check:\n- Results repository exists and is accessible\n- MCP server is running\n- Network connectivity"
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def call_analyze_leaderboard_sync(
|
| 152 |
+
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
|
| 153 |
+
metric_focus: str = "overall",
|
| 154 |
+
time_range: str = "last_week",
|
| 155 |
+
top_n: int = 5
|
| 156 |
+
) -> str:
|
| 157 |
+
"""
|
| 158 |
+
Synchronous version of call_analyze_leaderboard for Gradio event handlers
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
leaderboard_repo: HuggingFace dataset repository
|
| 162 |
+
metric_focus: Focus area - "overall", "accuracy", "cost", "latency", or "co2"
|
| 163 |
+
time_range: Time range - "last_week", "last_month", or "all_time"
|
| 164 |
+
top_n: Number of top models to highlight (3-10)
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
Markdown-formatted analysis from Gemini
|
| 168 |
+
"""
|
| 169 |
+
try:
|
| 170 |
+
client = get_mcp_client()
|
| 171 |
+
result = client.predict(
|
| 172 |
+
repo=leaderboard_repo,
|
| 173 |
+
metric=metric_focus,
|
| 174 |
+
time_range=time_range,
|
| 175 |
+
top_n=top_n,
|
| 176 |
+
api_name="/run_analyze_leaderboard"
|
| 177 |
+
)
|
| 178 |
+
return result
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return f"β **Error calling analyze_leaderboard**: {str(e)}\n\nPlease check:\n- MCP server is running at {MCP_SERVER_URL}\n- Network connectivity\n- API parameters are correct"
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def call_debug_trace_sync(
|
| 184 |
+
trace_id: str,
|
| 185 |
+
traces_repo: str,
|
| 186 |
+
question: str = "Analyze this trace and explain what happened"
|
| 187 |
+
) -> str:
|
| 188 |
+
"""
|
| 189 |
+
Synchronous version of call_debug_trace for Gradio event handlers
|
| 190 |
+
"""
|
| 191 |
+
try:
|
| 192 |
+
client = get_mcp_client()
|
| 193 |
+
result = client.predict(
|
| 194 |
+
trace_id_val=trace_id,
|
| 195 |
+
traces_repo_val=traces_repo,
|
| 196 |
+
question_val=question,
|
| 197 |
+
api_name="/run_debug_trace"
|
| 198 |
+
)
|
| 199 |
+
return result
|
| 200 |
+
except Exception as e:
|
| 201 |
+
return f"β **Error calling debug_trace**: {str(e)}"
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def call_compare_runs_sync(
|
| 205 |
+
run_id_1: str,
|
| 206 |
+
run_id_2: str,
|
| 207 |
+
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
|
| 208 |
+
comparison_focus: str = "comprehensive"
|
| 209 |
+
) -> str:
|
| 210 |
+
"""
|
| 211 |
+
Synchronous version of call_compare_runs for Gradio event handlers
|
| 212 |
+
"""
|
| 213 |
+
try:
|
| 214 |
+
client = get_mcp_client()
|
| 215 |
+
result = client.predict(
|
| 216 |
+
run_id_1=run_id_1,
|
| 217 |
+
run_id_2=run_id_2,
|
| 218 |
+
focus=comparison_focus,
|
| 219 |
+
repo=leaderboard_repo,
|
| 220 |
+
api_name="/run_compare_runs"
|
| 221 |
+
)
|
| 222 |
+
return result
|
| 223 |
+
except Exception as e:
|
| 224 |
+
return f"β **Error calling compare_runs**: {str(e)}"
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def call_analyze_results_sync(
|
| 228 |
+
results_repo: str,
|
| 229 |
+
focus_area: str = "overall",
|
| 230 |
+
max_rows: int = 100
|
| 231 |
+
) -> str:
|
| 232 |
+
"""
|
| 233 |
+
Synchronous version of call_analyze_results for Gradio event handlers
|
| 234 |
+
"""
|
| 235 |
+
try:
|
| 236 |
+
client = get_mcp_client()
|
| 237 |
+
result = client.predict(
|
| 238 |
+
repo=results_repo,
|
| 239 |
+
focus=focus_area,
|
| 240 |
+
max_rows=max_rows,
|
| 241 |
+
api_name="/run_analyze_results"
|
| 242 |
+
)
|
| 243 |
+
return result
|
| 244 |
+
except Exception as e:
|
| 245 |
+
return f"β **Error calling analyze_results**: {str(e)}"
|