Spaces:
Running
Running
Mandark-droid
commited on
Commit
Β·
920ea09
1
Parent(s):
5c51b47
Fix filter functionality and align with MockTraceMind structure
Browse files- Rename sidebar_model_filter to model_filter for consistency
- Add agent_type_filter to Leaderboard tab with proper info text
- Update DrillDown tab filters with sort controls and info panels
- Add apply_leaderboard_filters function for HTML leaderboard
- Add apply_drilldown_filters function for data table
- Add apply_sidebar_filters to sync sidebar filters across all tabs
- Wire sidebar model_filter to update leaderboard, drilldown, trends, and compare
- Wire sidebar agent_type_filter to apply globally
- Add info text to all filter components for better UX
- Fix provider filter choices population
- Remove duplicate filter handler code
app.py
CHANGED
|
@@ -420,8 +420,9 @@ def load_leaderboard():
|
|
| 420 |
|
| 421 |
# Get filter choices
|
| 422 |
models = ["All Models"] + sorted(df['model'].unique().tolist())
|
|
|
|
| 423 |
|
| 424 |
-
return html, gr.update(choices=models), gr.update(choices=models)
|
| 425 |
|
| 426 |
|
| 427 |
def refresh_leaderboard():
|
|
@@ -439,25 +440,111 @@ def refresh_leaderboard():
|
|
| 439 |
return html, gr.update(choices=models), gr.update(choices=models)
|
| 440 |
|
| 441 |
|
| 442 |
-
def
|
| 443 |
-
"""Apply filters and sorting to leaderboard"""
|
| 444 |
-
global leaderboard_df_cache
|
| 445 |
|
| 446 |
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
|
| 447 |
|
| 448 |
-
# Apply
|
| 449 |
-
if
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
if provider != "All":
|
| 452 |
df = df[df['provider'] == provider]
|
| 453 |
|
| 454 |
# Sort
|
| 455 |
-
|
|
|
|
| 456 |
|
| 457 |
-
html = generate_leaderboard_html(df, sort_by_col)
|
| 458 |
return html
|
| 459 |
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
def load_drilldown(agent_type, provider):
|
| 462 |
"""Load drilldown data with filters"""
|
| 463 |
global current_drilldown_df
|
|
@@ -938,20 +1025,20 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 938 |
gr.Markdown("---")
|
| 939 |
|
| 940 |
# Filters section
|
| 941 |
-
gr.Markdown("### π
|
| 942 |
-
|
| 943 |
-
|
| 944 |
choices=["All Models"],
|
| 945 |
value="All Models",
|
| 946 |
label="Model",
|
| 947 |
-
info="Filter evaluations by AI model"
|
| 948 |
)
|
| 949 |
-
|
| 950 |
sidebar_agent_type_filter = gr.Radio(
|
| 951 |
choices=["All", "tool", "code", "both"],
|
| 952 |
value="All",
|
| 953 |
label="Agent Type",
|
| 954 |
-
info="Tool: Function calling | Code: Code execution | Both: Hybrid"
|
| 955 |
)
|
| 956 |
|
| 957 |
# Main content area
|
|
@@ -963,47 +1050,83 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 963 |
gr.Markdown("## π Agent Evaluation Leaderboard")
|
| 964 |
with gr.Tabs():
|
| 965 |
with gr.TabItem("π Leaderboard"):
|
| 966 |
-
|
|
|
|
|
|
|
| 967 |
with gr.Row():
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
)
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 988 |
|
| 989 |
with gr.TabItem("π DrillDown"):
|
|
|
|
|
|
|
|
|
|
| 990 |
with gr.Row():
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1004 |
leaderboard_table = gr.Dataframe(
|
| 1005 |
-
headers=["Run ID", "Model", "Agent Type", "Provider", "Success Rate", "Tests", "Duration", "Cost"],
|
| 1006 |
-
interactive=False
|
|
|
|
| 1007 |
)
|
| 1008 |
|
| 1009 |
with gr.TabItem("π Trends"):
|
|
@@ -1212,7 +1335,7 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 1212 |
|
| 1213 |
app.load(
|
| 1214 |
fn=load_leaderboard,
|
| 1215 |
-
outputs=[leaderboard_by_model, model_filter,
|
| 1216 |
)
|
| 1217 |
|
| 1218 |
app.load(
|
|
@@ -1223,49 +1346,44 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 1223 |
# Load drilldown data on page load
|
| 1224 |
app.load(
|
| 1225 |
fn=load_drilldown,
|
| 1226 |
-
inputs=[
|
| 1227 |
outputs=[leaderboard_table]
|
| 1228 |
)
|
| 1229 |
|
| 1230 |
# Refresh button handler
|
| 1231 |
refresh_leaderboard_btn.click(
|
| 1232 |
fn=refresh_leaderboard,
|
| 1233 |
-
outputs=[leaderboard_by_model, model_filter,
|
| 1234 |
)
|
| 1235 |
|
|
|
|
| 1236 |
apply_filters_btn.click(
|
| 1237 |
-
fn=
|
| 1238 |
-
inputs=[
|
| 1239 |
outputs=[leaderboard_by_model]
|
| 1240 |
)
|
| 1241 |
|
| 1242 |
-
|
| 1243 |
-
|
| 1244 |
-
|
|
|
|
| 1245 |
outputs=[leaderboard_table]
|
| 1246 |
)
|
| 1247 |
|
| 1248 |
-
# Sidebar
|
| 1249 |
-
|
| 1250 |
-
|
| 1251 |
-
|
| 1252 |
-
|
| 1253 |
-
sidebar_model_filter.change(
|
| 1254 |
-
fn=apply_sidebar_model_filter,
|
| 1255 |
-
inputs=[sidebar_model_filter, sort_by],
|
| 1256 |
-
outputs=[leaderboard_by_model, model_filter]
|
| 1257 |
)
|
| 1258 |
|
| 1259 |
-
def apply_sidebar_agent_type_filter(agent_type):
|
| 1260 |
-
"""Apply sidebar agent type filter to drilldown"""
|
| 1261 |
-
return load_drilldown(agent_type, "All"), gr.update(value=agent_type)
|
| 1262 |
-
|
| 1263 |
sidebar_agent_type_filter.change(
|
| 1264 |
-
fn=
|
| 1265 |
-
inputs=[sidebar_agent_type_filter],
|
| 1266 |
-
outputs=[leaderboard_table,
|
| 1267 |
)
|
| 1268 |
|
|
|
|
| 1269 |
viz_type.change(
|
| 1270 |
fn=update_analytics,
|
| 1271 |
inputs=[viz_type],
|
|
|
|
| 420 |
|
| 421 |
# Get filter choices
|
| 422 |
models = ["All Models"] + sorted(df['model'].unique().tolist())
|
| 423 |
+
providers = ["All"] + sorted(df['provider'].unique().tolist())
|
| 424 |
|
| 425 |
+
return html, gr.update(choices=models), gr.update(choices=models), gr.update(choices=providers)
|
| 426 |
|
| 427 |
|
| 428 |
def refresh_leaderboard():
|
|
|
|
| 440 |
return html, gr.update(choices=models), gr.update(choices=models)
|
| 441 |
|
| 442 |
|
| 443 |
+
def apply_leaderboard_filters(agent_type, provider, sort_by_col, sort_order):
|
| 444 |
+
"""Apply filters and sorting to styled HTML leaderboard"""
|
| 445 |
+
global leaderboard_df_cache, model_filter
|
| 446 |
|
| 447 |
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
|
| 448 |
|
| 449 |
+
# Apply model filter from sidebar
|
| 450 |
+
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
|
| 451 |
+
if selected_model != "All Models":
|
| 452 |
+
df = df[df['model'] == selected_model]
|
| 453 |
+
|
| 454 |
+
# Apply agent type filter
|
| 455 |
+
if agent_type != "All":
|
| 456 |
+
df = df[df['agent_type'] == agent_type]
|
| 457 |
+
|
| 458 |
+
# Apply provider filter
|
| 459 |
if provider != "All":
|
| 460 |
df = df[df['provider'] == provider]
|
| 461 |
|
| 462 |
# Sort
|
| 463 |
+
ascending = (sort_order == "Ascending")
|
| 464 |
+
df = df.sort_values(by=sort_by_col, ascending=ascending)
|
| 465 |
|
| 466 |
+
html = generate_leaderboard_html(df, sort_by_col, ascending)
|
| 467 |
return html
|
| 468 |
|
| 469 |
|
| 470 |
+
def apply_drilldown_filters(agent_type, provider, sort_by_col, sort_order):
|
| 471 |
+
"""Apply filters and sorting to drilldown table"""
|
| 472 |
+
global leaderboard_df_cache
|
| 473 |
+
|
| 474 |
+
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
|
| 475 |
+
|
| 476 |
+
# Apply model filter from sidebar
|
| 477 |
+
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
|
| 478 |
+
if selected_model != "All Models":
|
| 479 |
+
df = df[df['model'] == selected_model]
|
| 480 |
+
|
| 481 |
+
# Apply agent type filter
|
| 482 |
+
if agent_type != "All":
|
| 483 |
+
df = df[df['agent_type'] == agent_type]
|
| 484 |
+
|
| 485 |
+
# Apply provider filter
|
| 486 |
+
if provider != "All":
|
| 487 |
+
df = df[df['provider'] == provider]
|
| 488 |
+
|
| 489 |
+
# Sort
|
| 490 |
+
ascending = (sort_order == "Ascending")
|
| 491 |
+
df = df.sort_values(by=sort_by_col, ascending=ascending).reset_index(drop=True)
|
| 492 |
+
|
| 493 |
+
# Prepare simplified dataframe for display
|
| 494 |
+
display_df = df[[
|
| 495 |
+
'run_id', 'model', 'agent_type', 'provider', 'success_rate',
|
| 496 |
+
'total_tests', 'avg_duration_ms', 'total_cost_usd', 'submitted_by'
|
| 497 |
+
]].copy()
|
| 498 |
+
display_df.columns = ['Run ID', 'Model', 'Agent Type', 'Provider', 'Success Rate', 'Tests', 'Duration (ms)', 'Cost (USD)', 'Submitted By']
|
| 499 |
+
|
| 500 |
+
return gr.update(value=display_df)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def apply_sidebar_filters(selected_model, selected_agent_type):
|
| 504 |
+
"""Apply sidebar filters to both leaderboard tabs"""
|
| 505 |
+
global leaderboard_df_cache
|
| 506 |
+
|
| 507 |
+
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
|
| 508 |
+
|
| 509 |
+
# Apply model filter
|
| 510 |
+
if selected_model != "All Models":
|
| 511 |
+
df = df[df['model'] == selected_model]
|
| 512 |
+
|
| 513 |
+
# Apply agent type filter
|
| 514 |
+
if selected_agent_type != "All":
|
| 515 |
+
df = df[df['agent_type'] == selected_agent_type]
|
| 516 |
+
|
| 517 |
+
# For HTML leaderboard
|
| 518 |
+
sorted_df = df.sort_values(by='success_rate', ascending=False).reset_index(drop=True)
|
| 519 |
+
html = generate_leaderboard_html(sorted_df, 'success_rate', False)
|
| 520 |
+
|
| 521 |
+
# For drilldown table
|
| 522 |
+
display_df = df[[
|
| 523 |
+
'run_id', 'model', 'agent_type', 'provider', 'success_rate',
|
| 524 |
+
'total_tests', 'avg_duration_ms', 'total_cost_usd', 'submitted_by'
|
| 525 |
+
]].copy()
|
| 526 |
+
display_df.columns = ['Run ID', 'Model', 'Agent Type', 'Provider', 'Success Rate', 'Tests', 'Duration (ms)', 'Cost (USD)', 'Submitted By']
|
| 527 |
+
|
| 528 |
+
# Update trends
|
| 529 |
+
trends_fig = create_trends_plot(df)
|
| 530 |
+
|
| 531 |
+
# Update compare dropdowns
|
| 532 |
+
compare_choices = []
|
| 533 |
+
for _, row in df.iterrows():
|
| 534 |
+
label = f"{row.get('model', 'Unknown')} - {row.get('timestamp', 'N/A')}"
|
| 535 |
+
value = row.get('run_id', '')
|
| 536 |
+
if value:
|
| 537 |
+
compare_choices.append((label, value))
|
| 538 |
+
|
| 539 |
+
return {
|
| 540 |
+
leaderboard_by_model: gr.update(value=html),
|
| 541 |
+
leaderboard_table: gr.update(value=display_df),
|
| 542 |
+
trends_plot: gr.update(value=trends_fig),
|
| 543 |
+
compare_components['compare_run_a_dropdown']: gr.update(choices=compare_choices),
|
| 544 |
+
compare_components['compare_run_b_dropdown']: gr.update(choices=compare_choices)
|
| 545 |
+
}
|
| 546 |
+
|
| 547 |
+
|
| 548 |
def load_drilldown(agent_type, provider):
|
| 549 |
"""Load drilldown data with filters"""
|
| 550 |
global current_drilldown_df
|
|
|
|
| 1025 |
gr.Markdown("---")
|
| 1026 |
|
| 1027 |
# Filters section
|
| 1028 |
+
gr.Markdown("### π Filters")
|
| 1029 |
+
|
| 1030 |
+
model_filter = gr.Dropdown(
|
| 1031 |
choices=["All Models"],
|
| 1032 |
value="All Models",
|
| 1033 |
label="Model",
|
| 1034 |
+
info="Filter evaluations by AI model. Select 'All Models' to see all runs."
|
| 1035 |
)
|
| 1036 |
+
|
| 1037 |
sidebar_agent_type_filter = gr.Radio(
|
| 1038 |
choices=["All", "tool", "code", "both"],
|
| 1039 |
value="All",
|
| 1040 |
label="Agent Type",
|
| 1041 |
+
info="Tool: Function calling agents | Code: Code execution | Both: Hybrid agents"
|
| 1042 |
)
|
| 1043 |
|
| 1044 |
# Main content area
|
|
|
|
| 1050 |
gr.Markdown("## π Agent Evaluation Leaderboard")
|
| 1051 |
with gr.Tabs():
|
| 1052 |
with gr.TabItem("π Leaderboard"):
|
| 1053 |
+
gr.Markdown("*Styled leaderboard with inline filters*")
|
| 1054 |
+
|
| 1055 |
+
# Inline filters for styled leaderboard
|
| 1056 |
with gr.Row():
|
| 1057 |
+
with gr.Column(scale=1):
|
| 1058 |
+
agent_type_filter = gr.Radio(
|
| 1059 |
+
choices=["All", "tool", "code", "both"],
|
| 1060 |
+
value="All",
|
| 1061 |
+
label="Agent Type",
|
| 1062 |
+
info="Filter by agent type"
|
| 1063 |
+
)
|
| 1064 |
+
with gr.Column(scale=1):
|
| 1065 |
+
provider_filter = gr.Dropdown(
|
| 1066 |
+
choices=["All"],
|
| 1067 |
+
value="All",
|
| 1068 |
+
label="Provider",
|
| 1069 |
+
info="Filter by provider"
|
| 1070 |
+
)
|
| 1071 |
+
with gr.Column(scale=1):
|
| 1072 |
+
sort_by_dropdown = gr.Dropdown(
|
| 1073 |
+
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
|
| 1074 |
+
value="success_rate",
|
| 1075 |
+
label="Sort By"
|
| 1076 |
+
)
|
| 1077 |
+
with gr.Column(scale=1):
|
| 1078 |
+
sort_order = gr.Radio(
|
| 1079 |
+
choices=["Descending", "Ascending"],
|
| 1080 |
+
value="Descending",
|
| 1081 |
+
label="Sort Order"
|
| 1082 |
+
)
|
| 1083 |
+
|
| 1084 |
+
with gr.Row():
|
| 1085 |
+
apply_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
|
| 1086 |
+
|
| 1087 |
+
# Styled HTML leaderboard
|
| 1088 |
+
leaderboard_by_model = gr.HTML(label="Styled Leaderboard")
|
| 1089 |
|
| 1090 |
with gr.TabItem("π DrillDown"):
|
| 1091 |
+
gr.Markdown("*Click any row to view detailed run information*")
|
| 1092 |
+
|
| 1093 |
+
# Inline filters for drilldown table
|
| 1094 |
with gr.Row():
|
| 1095 |
+
with gr.Column(scale=1):
|
| 1096 |
+
drilldown_agent_type_filter = gr.Radio(
|
| 1097 |
+
choices=["All", "tool", "code", "both"],
|
| 1098 |
+
value="All",
|
| 1099 |
+
label="Agent Type",
|
| 1100 |
+
info="Filter by agent type"
|
| 1101 |
+
)
|
| 1102 |
+
with gr.Column(scale=1):
|
| 1103 |
+
drilldown_provider_filter = gr.Dropdown(
|
| 1104 |
+
choices=["All"],
|
| 1105 |
+
value="All",
|
| 1106 |
+
label="Provider",
|
| 1107 |
+
info="Filter by provider"
|
| 1108 |
+
)
|
| 1109 |
+
with gr.Column(scale=1):
|
| 1110 |
+
drilldown_sort_by_dropdown = gr.Dropdown(
|
| 1111 |
+
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
|
| 1112 |
+
value="success_rate",
|
| 1113 |
+
label="Sort By"
|
| 1114 |
+
)
|
| 1115 |
+
with gr.Column(scale=1):
|
| 1116 |
+
drilldown_sort_order = gr.Radio(
|
| 1117 |
+
choices=["Descending", "Ascending"],
|
| 1118 |
+
value="Descending",
|
| 1119 |
+
label="Sort Order"
|
| 1120 |
+
)
|
| 1121 |
+
|
| 1122 |
+
with gr.Row():
|
| 1123 |
+
apply_drilldown_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
|
| 1124 |
+
|
| 1125 |
+
# Simple table controlled by inline filters
|
| 1126 |
leaderboard_table = gr.Dataframe(
|
| 1127 |
+
headers=["Run ID", "Model", "Agent Type", "Provider", "Success Rate", "Tests", "Duration (ms)", "Cost (USD)", "Submitted By"],
|
| 1128 |
+
interactive=False,
|
| 1129 |
+
wrap=True
|
| 1130 |
)
|
| 1131 |
|
| 1132 |
with gr.TabItem("π Trends"):
|
|
|
|
| 1335 |
|
| 1336 |
app.load(
|
| 1337 |
fn=load_leaderboard,
|
| 1338 |
+
outputs=[leaderboard_by_model, model_filter, model_filter, provider_filter]
|
| 1339 |
)
|
| 1340 |
|
| 1341 |
app.load(
|
|
|
|
| 1346 |
# Load drilldown data on page load
|
| 1347 |
app.load(
|
| 1348 |
fn=load_drilldown,
|
| 1349 |
+
inputs=[drilldown_agent_type_filter, drilldown_provider_filter],
|
| 1350 |
outputs=[leaderboard_table]
|
| 1351 |
)
|
| 1352 |
|
| 1353 |
# Refresh button handler
|
| 1354 |
refresh_leaderboard_btn.click(
|
| 1355 |
fn=refresh_leaderboard,
|
| 1356 |
+
outputs=[leaderboard_by_model, model_filter, model_filter]
|
| 1357 |
)
|
| 1358 |
|
| 1359 |
+
# Leaderboard tab inline filters
|
| 1360 |
apply_filters_btn.click(
|
| 1361 |
+
fn=apply_leaderboard_filters,
|
| 1362 |
+
inputs=[agent_type_filter, provider_filter, sort_by_dropdown, sort_order],
|
| 1363 |
outputs=[leaderboard_by_model]
|
| 1364 |
)
|
| 1365 |
|
| 1366 |
+
# DrillDown tab inline filters
|
| 1367 |
+
apply_drilldown_filters_btn.click(
|
| 1368 |
+
fn=apply_drilldown_filters,
|
| 1369 |
+
inputs=[drilldown_agent_type_filter, drilldown_provider_filter, drilldown_sort_by_dropdown, drilldown_sort_order],
|
| 1370 |
outputs=[leaderboard_table]
|
| 1371 |
)
|
| 1372 |
|
| 1373 |
+
# Sidebar filters (apply to all tabs)
|
| 1374 |
+
model_filter.change(
|
| 1375 |
+
fn=apply_sidebar_filters,
|
| 1376 |
+
inputs=[model_filter, sidebar_agent_type_filter],
|
| 1377 |
+
outputs=[leaderboard_by_model, leaderboard_table, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1378 |
)
|
| 1379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1380 |
sidebar_agent_type_filter.change(
|
| 1381 |
+
fn=apply_sidebar_filters,
|
| 1382 |
+
inputs=[model_filter, sidebar_agent_type_filter],
|
| 1383 |
+
outputs=[leaderboard_by_model, leaderboard_table, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
|
| 1384 |
)
|
| 1385 |
|
| 1386 |
+
|
| 1387 |
viz_type.change(
|
| 1388 |
fn=update_analytics,
|
| 1389 |
inputs=[viz_type],
|