Spaces:
Running
feat: Add comprehensive documentation screen with 4-tab ecosystem guide
Browse filesAdd new Documentation screen accessible from sidebar navigation with complete documentation for all TraceMind ecosystem components:
- About tab: Ecosystem overview, architecture diagrams, and quick start guide
- TraceVerde tab: genai_otel_instrument library documentation with installation, usage examples, and troubleshooting
- SmolTrace tab: Evaluation engine guide with CLI usage, dataset schemas, and best practices
- TraceMind-MCP-Server tab: MCP server implementation details with tool specifications and integration examples
Changes:
- Created screens/documentation.py with 1600+ lines of comprehensive docs
- Updated app.py to integrate documentation screen into navigation flow
- Added navigate_to_documentation() handler and wired up docs_nav_btn
- Updated all navigation functions to control documentation_screen visibility
- app.py +49 -6
- screens/documentation.py +1606 -0
|
@@ -59,6 +59,7 @@ from screens.chat import (
|
|
| 59 |
on_clear_chat,
|
| 60 |
on_quick_action
|
| 61 |
)
|
|
|
|
| 62 |
from screens.mcp_helpers import (
|
| 63 |
call_analyze_leaderboard_sync,
|
| 64 |
call_debug_trace_sync,
|
|
@@ -2413,6 +2414,11 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2413 |
|
| 2414 |
eval_success_message = gr.HTML(visible=False)
|
| 2415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2416 |
# ============================================================================
|
| 2417 |
# Evaluation Helper Functions
|
| 2418 |
# ============================================================================
|
|
@@ -2783,6 +2789,7 @@ No historical data available for **{model}**.
|
|
| 2783 |
chat_screen: gr.update(visible=False),
|
| 2784 |
synthetic_data_screen: gr.update(visible=False),
|
| 2785 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2786 |
dashboard_nav_btn: gr.update(variant="primary"),
|
| 2787 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2788 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2805,6 +2812,7 @@ No historical data available for **{model}**.
|
|
| 2805 |
chat_screen: gr.update(visible=False),
|
| 2806 |
synthetic_data_screen: gr.update(visible=False),
|
| 2807 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2808 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2809 |
leaderboard_nav_btn: gr.update(variant="primary"),
|
| 2810 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2825,6 +2833,7 @@ No historical data available for **{model}**.
|
|
| 2825 |
chat_screen: gr.update(visible=False),
|
| 2826 |
synthetic_data_screen: gr.update(visible=False),
|
| 2827 |
new_evaluation_screen: gr.update(visible=True),
|
|
|
|
| 2828 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2829 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2830 |
new_eval_nav_btn: gr.update(variant="primary"),
|
|
@@ -2857,6 +2866,7 @@ No historical data available for **{model}**.
|
|
| 2857 |
chat_screen: gr.update(visible=False),
|
| 2858 |
synthetic_data_screen: gr.update(visible=False),
|
| 2859 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2860 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2861 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2862 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2878,6 +2888,7 @@ No historical data available for **{model}**.
|
|
| 2878 |
chat_screen: gr.update(visible=False),
|
| 2879 |
synthetic_data_screen: gr.update(visible=False),
|
| 2880 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2881 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2882 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2883 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2898,6 +2909,7 @@ No historical data available for **{model}**.
|
|
| 2898 |
chat_screen: gr.update(visible=True),
|
| 2899 |
synthetic_data_screen: gr.update(visible=False),
|
| 2900 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2901 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2902 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2903 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2918,6 +2930,7 @@ No historical data available for **{model}**.
|
|
| 2918 |
chat_screen: gr.update(visible=False),
|
| 2919 |
synthetic_data_screen: gr.update(visible=True),
|
| 2920 |
new_evaluation_screen: gr.update(visible=False),
|
|
|
|
| 2921 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2922 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2923 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
@@ -2927,6 +2940,27 @@ No historical data available for **{model}**.
|
|
| 2927 |
docs_nav_btn: gr.update(variant="secondary"),
|
| 2928 |
}
|
| 2929 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2930 |
# Synthetic Data Generator Callbacks
|
| 2931 |
def on_generate_synthetic_data(domain, tools, num_tasks, difficulty, agent_type):
|
| 2932 |
"""Generate synthetic dataset using MCP server"""
|
|
@@ -3243,7 +3277,7 @@ Result: {result}
|
|
| 3243 |
fn=navigate_to_dashboard,
|
| 3244 |
outputs=[
|
| 3245 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3246 |
-
new_evaluation_screen,
|
| 3247 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3248 |
] + list(dashboard_components.values())
|
| 3249 |
)
|
|
@@ -3251,7 +3285,7 @@ Result: {result}
|
|
| 3251 |
leaderboard_nav_btn.click(
|
| 3252 |
fn=navigate_to_leaderboard,
|
| 3253 |
outputs=[
|
| 3254 |
-
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen,
|
| 3255 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3256 |
]
|
| 3257 |
)
|
|
@@ -3259,7 +3293,7 @@ Result: {result}
|
|
| 3259 |
new_eval_nav_btn.click(
|
| 3260 |
fn=navigate_to_new_evaluation,
|
| 3261 |
outputs=[
|
| 3262 |
-
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen,
|
| 3263 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3264 |
]
|
| 3265 |
)
|
|
@@ -3268,7 +3302,7 @@ Result: {result}
|
|
| 3268 |
fn=navigate_to_compare,
|
| 3269 |
outputs=[
|
| 3270 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3271 |
-
new_evaluation_screen,
|
| 3272 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn,
|
| 3273 |
compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']
|
| 3274 |
]
|
|
@@ -3278,7 +3312,7 @@ Result: {result}
|
|
| 3278 |
fn=navigate_to_chat,
|
| 3279 |
outputs=[
|
| 3280 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3281 |
-
new_evaluation_screen,
|
| 3282 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3283 |
]
|
| 3284 |
)
|
|
@@ -3286,7 +3320,16 @@ Result: {result}
|
|
| 3286 |
fn=navigate_to_synthetic_data,
|
| 3287 |
outputs=[
|
| 3288 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3289 |
-
new_evaluation_screen,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3290 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3291 |
]
|
| 3292 |
)
|
|
|
|
| 59 |
on_clear_chat,
|
| 60 |
on_quick_action
|
| 61 |
)
|
| 62 |
+
from screens.documentation import create_documentation_screen
|
| 63 |
from screens.mcp_helpers import (
|
| 64 |
call_analyze_leaderboard_sync,
|
| 65 |
call_debug_trace_sync,
|
|
|
|
| 2414 |
|
| 2415 |
eval_success_message = gr.HTML(visible=False)
|
| 2416 |
|
| 2417 |
+
# ============================================================================
|
| 2418 |
+
# Screen 9: Documentation
|
| 2419 |
+
# ============================================================================
|
| 2420 |
+
documentation_screen = create_documentation_screen()
|
| 2421 |
+
|
| 2422 |
# ============================================================================
|
| 2423 |
# Evaluation Helper Functions
|
| 2424 |
# ============================================================================
|
|
|
|
| 2789 |
chat_screen: gr.update(visible=False),
|
| 2790 |
synthetic_data_screen: gr.update(visible=False),
|
| 2791 |
new_evaluation_screen: gr.update(visible=False),
|
| 2792 |
+
documentation_screen: gr.update(visible=False),
|
| 2793 |
dashboard_nav_btn: gr.update(variant="primary"),
|
| 2794 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2795 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2812 |
chat_screen: gr.update(visible=False),
|
| 2813 |
synthetic_data_screen: gr.update(visible=False),
|
| 2814 |
new_evaluation_screen: gr.update(visible=False),
|
| 2815 |
+
documentation_screen: gr.update(visible=False),
|
| 2816 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2817 |
leaderboard_nav_btn: gr.update(variant="primary"),
|
| 2818 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2833 |
chat_screen: gr.update(visible=False),
|
| 2834 |
synthetic_data_screen: gr.update(visible=False),
|
| 2835 |
new_evaluation_screen: gr.update(visible=True),
|
| 2836 |
+
documentation_screen: gr.update(visible=False),
|
| 2837 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2838 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2839 |
new_eval_nav_btn: gr.update(variant="primary"),
|
|
|
|
| 2866 |
chat_screen: gr.update(visible=False),
|
| 2867 |
synthetic_data_screen: gr.update(visible=False),
|
| 2868 |
new_evaluation_screen: gr.update(visible=False),
|
| 2869 |
+
documentation_screen: gr.update(visible=False),
|
| 2870 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2871 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2872 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2888 |
chat_screen: gr.update(visible=False),
|
| 2889 |
synthetic_data_screen: gr.update(visible=False),
|
| 2890 |
new_evaluation_screen: gr.update(visible=False),
|
| 2891 |
+
documentation_screen: gr.update(visible=False),
|
| 2892 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2893 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2894 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2909 |
chat_screen: gr.update(visible=True),
|
| 2910 |
synthetic_data_screen: gr.update(visible=False),
|
| 2911 |
new_evaluation_screen: gr.update(visible=False),
|
| 2912 |
+
documentation_screen: gr.update(visible=False),
|
| 2913 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2914 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2915 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2930 |
chat_screen: gr.update(visible=False),
|
| 2931 |
synthetic_data_screen: gr.update(visible=True),
|
| 2932 |
new_evaluation_screen: gr.update(visible=False),
|
| 2933 |
+
documentation_screen: gr.update(visible=False),
|
| 2934 |
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2935 |
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2936 |
new_eval_nav_btn: gr.update(variant="secondary"),
|
|
|
|
| 2940 |
docs_nav_btn: gr.update(variant="secondary"),
|
| 2941 |
}
|
| 2942 |
|
| 2943 |
+
def navigate_to_documentation():
|
| 2944 |
+
"""Navigate to documentation screen"""
|
| 2945 |
+
return {
|
| 2946 |
+
dashboard_screen: gr.update(visible=False),
|
| 2947 |
+
leaderboard_screen: gr.update(visible=False),
|
| 2948 |
+
run_detail_screen: gr.update(visible=False),
|
| 2949 |
+
trace_detail_screen: gr.update(visible=False),
|
| 2950 |
+
compare_screen: gr.update(visible=False),
|
| 2951 |
+
chat_screen: gr.update(visible=False),
|
| 2952 |
+
synthetic_data_screen: gr.update(visible=False),
|
| 2953 |
+
new_evaluation_screen: gr.update(visible=False),
|
| 2954 |
+
documentation_screen: gr.update(visible=True),
|
| 2955 |
+
dashboard_nav_btn: gr.update(variant="secondary"),
|
| 2956 |
+
leaderboard_nav_btn: gr.update(variant="secondary"),
|
| 2957 |
+
new_eval_nav_btn: gr.update(variant="secondary"),
|
| 2958 |
+
compare_nav_btn: gr.update(variant="secondary"),
|
| 2959 |
+
chat_nav_btn: gr.update(variant="secondary"),
|
| 2960 |
+
synthetic_data_nav_btn: gr.update(variant="secondary"),
|
| 2961 |
+
docs_nav_btn: gr.update(variant="primary"),
|
| 2962 |
+
}
|
| 2963 |
+
|
| 2964 |
# Synthetic Data Generator Callbacks
|
| 2965 |
def on_generate_synthetic_data(domain, tools, num_tasks, difficulty, agent_type):
|
| 2966 |
"""Generate synthetic dataset using MCP server"""
|
|
|
|
| 3277 |
fn=navigate_to_dashboard,
|
| 3278 |
outputs=[
|
| 3279 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3280 |
+
new_evaluation_screen, documentation_screen,
|
| 3281 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3282 |
] + list(dashboard_components.values())
|
| 3283 |
)
|
|
|
|
| 3285 |
leaderboard_nav_btn.click(
|
| 3286 |
fn=navigate_to_leaderboard,
|
| 3287 |
outputs=[
|
| 3288 |
+
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen,
|
| 3289 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3290 |
]
|
| 3291 |
)
|
|
|
|
| 3293 |
new_eval_nav_btn.click(
|
| 3294 |
fn=navigate_to_new_evaluation,
|
| 3295 |
outputs=[
|
| 3296 |
+
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen,
|
| 3297 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3298 |
]
|
| 3299 |
)
|
|
|
|
| 3302 |
fn=navigate_to_compare,
|
| 3303 |
outputs=[
|
| 3304 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3305 |
+
new_evaluation_screen, documentation_screen,
|
| 3306 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn,
|
| 3307 |
compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']
|
| 3308 |
]
|
|
|
|
| 3312 |
fn=navigate_to_chat,
|
| 3313 |
outputs=[
|
| 3314 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3315 |
+
new_evaluation_screen, documentation_screen,
|
| 3316 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3317 |
]
|
| 3318 |
)
|
|
|
|
| 3320 |
fn=navigate_to_synthetic_data,
|
| 3321 |
outputs=[
|
| 3322 |
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3323 |
+
new_evaluation_screen, documentation_screen,
|
| 3324 |
+
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3325 |
+
]
|
| 3326 |
+
)
|
| 3327 |
+
|
| 3328 |
+
docs_nav_btn.click(
|
| 3329 |
+
fn=navigate_to_documentation,
|
| 3330 |
+
outputs=[
|
| 3331 |
+
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
|
| 3332 |
+
new_evaluation_screen, documentation_screen,
|
| 3333 |
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, docs_nav_btn
|
| 3334 |
]
|
| 3335 |
)
|
|
@@ -0,0 +1,1606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Documentation Screen for TraceMind-AI
|
| 3 |
+
Comprehensive documentation for the TraceMind ecosystem
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def create_about_tab():
|
| 10 |
+
"""Create the About tab with ecosystem overview"""
|
| 11 |
+
return gr.Markdown("""
|
| 12 |
+
# π§ TraceMind Ecosystem
|
| 13 |
+
|
| 14 |
+
**The Complete AI Agent Evaluation Platform**
|
| 15 |
+
|
| 16 |
+
TraceMind is a comprehensive ecosystem for evaluating, monitoring, and optimizing AI agents. Built on open-source foundations and powered by the Model Context Protocol (MCP), TraceMind provides everything you need for production-grade agent evaluation.
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## ποΈ Architecture Overview
|
| 21 |
+
|
| 22 |
+
The TraceMind ecosystem consists of four integrated components:
|
| 23 |
+
|
| 24 |
+
```
|
| 25 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 26 |
+
β TraceMind Ecosystem β
|
| 27 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
|
| 28 |
+
β β
|
| 29 |
+
β 1οΈβ£ TraceVerde (genai_otel_instrument) β
|
| 30 |
+
β ββ Automatic OpenTelemetry Instrumentation β
|
| 31 |
+
β ββ Zero-code tracing for LLM frameworks β
|
| 32 |
+
β β
|
| 33 |
+
β 2οΈβ£ SMOLTRACE β
|
| 34 |
+
β ββ Lightweight Agent Evaluation Engine β
|
| 35 |
+
β ββ Generates structured datasets β
|
| 36 |
+
β β
|
| 37 |
+
β 3οΈβ£ TraceMind-MCP-Server β
|
| 38 |
+
β ββ MCP Server (Track 1: Building MCP) β
|
| 39 |
+
β ββ Provides intelligent analysis tools β
|
| 40 |
+
β β
|
| 41 |
+
β 4οΈβ£ TraceMind-AI (This App!) β
|
| 42 |
+
β ββ Gradio UI (Track 2: MCP in Action) β
|
| 43 |
+
β ββ Visualizes data + consumes MCP tools β
|
| 44 |
+
β β
|
| 45 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
|
| 50 |
+
## π The Complete Flow
|
| 51 |
+
|
| 52 |
+
### 1. **Instrument Your Agents** (TraceVerde)
|
| 53 |
+
```python
|
| 54 |
+
from genai_otel_instrument import instrument_llm
|
| 55 |
+
|
| 56 |
+
# Zero-code instrumentation
|
| 57 |
+
instrument_llm(enable_content_capture=True)
|
| 58 |
+
|
| 59 |
+
# Your agent code runs normally, but now traced!
|
| 60 |
+
agent.run("What's the weather in Tokyo?")
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### 2. **Evaluate with SMOLTRACE**
|
| 64 |
+
```bash
|
| 65 |
+
# Run comprehensive evaluation
|
| 66 |
+
smoltrace-eval \\
|
| 67 |
+
--model openai/gpt-4 \\
|
| 68 |
+
--agent-type both \\
|
| 69 |
+
--enable-otel
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### 3. **Analyze Results** (This UI)
|
| 73 |
+
- View leaderboard rankings
|
| 74 |
+
- Compare model performance
|
| 75 |
+
- Explore detailed traces
|
| 76 |
+
- Ask questions with MCP-powered chat
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
## π― Key Features
|
| 81 |
+
|
| 82 |
+
### For Developers
|
| 83 |
+
- β
**Zero-code Instrumentation**: Just import and go
|
| 84 |
+
- β
**Framework Agnostic**: Works with LiteLLM, Transformers, LangChain, CrewAI, etc.
|
| 85 |
+
- β
**Production Ready**: Lightweight, minimal overhead
|
| 86 |
+
- β
**Standards Compliant**: Uses OpenTelemetry conventions
|
| 87 |
+
|
| 88 |
+
### For Researchers
|
| 89 |
+
- β
**Comprehensive Metrics**: Token usage, costs, latency, GPU utilization
|
| 90 |
+
- β
**Reproducible Results**: Structured datasets on HuggingFace
|
| 91 |
+
- β
**Model Comparison**: Side-by-side analysis
|
| 92 |
+
- β
**Trace Visualization**: Step-by-step agent execution
|
| 93 |
+
|
| 94 |
+
### For Organizations
|
| 95 |
+
- β
**Cost Transparency**: Real-time cost tracking and estimation
|
| 96 |
+
- β
**Sustainability**: CO2 emissions monitoring (TraceVerde)
|
| 97 |
+
- β
**MCP Integration**: Connect to intelligent analysis tools
|
| 98 |
+
- β
**HuggingFace Native**: Seamless dataset integration
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## π Built for MCP's 1st Birthday Hackathon
|
| 103 |
+
|
| 104 |
+
TraceMind demonstrates the complete MCP ecosystem:
|
| 105 |
+
|
| 106 |
+
**Track 1 (Building MCP)**: [TraceMind-mcp-server](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
|
| 107 |
+
- Provides MCP tools for leaderboard analysis, cost estimation, trace debugging
|
| 108 |
+
|
| 109 |
+
**Track 2 (MCP in Action)**: TraceMind-AI (this app!)
|
| 110 |
+
- Consumes MCP servers for autonomous agent chat and intelligent insights
|
| 111 |
+
|
| 112 |
+
---
|
| 113 |
+
|
| 114 |
+
## π Quick Links
|
| 115 |
+
|
| 116 |
+
| Component | Description | Links |
|
| 117 |
+
|-----------|-------------|-------|
|
| 118 |
+
| **TraceVerde** | OTEL Instrumentation | [GitHub](https://github.com/Mandark-droid/genai_otel_instrument) β’ [PyPI](https://pypi.org/project/genai-otel-instrument) |
|
| 119 |
+
| **SMOLTRACE** | Evaluation Engine | [GitHub](https://github.com/Mandark-droid/SMOLTRACE) β’ [PyPI](https://pypi.org/project/smoltrace/) |
|
| 120 |
+
| **MCP Server** | Building MCP (Track 1) | [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server) |
|
| 121 |
+
| **TraceMind-AI** | MCP in Action (Track 2) | [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind) |
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## π Documentation Navigation
|
| 126 |
+
|
| 127 |
+
Use the tabs above to explore detailed documentation for each component:
|
| 128 |
+
|
| 129 |
+
- **About**: This overview (you are here)
|
| 130 |
+
- **TraceVerde**: OpenTelemetry instrumentation for LLMs
|
| 131 |
+
- **SmolTrace**: Agent evaluation engine
|
| 132 |
+
- **TraceMind-MCP-Server**: MCP server implementation details
|
| 133 |
+
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
## π‘ Getting Started
|
| 137 |
+
|
| 138 |
+
### Quick Start (5 minutes)
|
| 139 |
+
```bash
|
| 140 |
+
# 1. Install TraceVerde for instrumentation
|
| 141 |
+
pip install genai-otel-instrument
|
| 142 |
+
|
| 143 |
+
# 2. Install SMOLTRACE for evaluation
|
| 144 |
+
pip install smoltrace
|
| 145 |
+
|
| 146 |
+
# 3. Run your first evaluation
|
| 147 |
+
smoltrace-eval --model openai/gpt-4 --agent-type tool
|
| 148 |
+
|
| 149 |
+
# 4. View results in TraceMind-AI (this UI!)
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
### Learn More
|
| 153 |
+
- Read component-specific docs in the tabs above
|
| 154 |
+
- Try the **Agent Chat** for interactive queries
|
| 155 |
+
- Explore the **Leaderboard** to see real evaluation data
|
| 156 |
+
- Check the **Trace Detail** screen for deep inspection
|
| 157 |
+
|
| 158 |
+
---
|
| 159 |
+
|
| 160 |
+
## π€ Contributing
|
| 161 |
+
|
| 162 |
+
All components are open source under AGPL-3.0:
|
| 163 |
+
- Report issues on GitHub
|
| 164 |
+
- Submit pull requests
|
| 165 |
+
- Share your evaluation results
|
| 166 |
+
- Join the community discussions
|
| 167 |
+
|
| 168 |
+
---
|
| 169 |
+
|
| 170 |
+
## π Acknowledgments
|
| 171 |
+
|
| 172 |
+
Built with β€οΈ for **MCP's 1st Birthday Hackathon** by **Kshitij Thakkar**
|
| 173 |
+
|
| 174 |
+
Special thanks to:
|
| 175 |
+
- **Anthropic** - For the Model Context Protocol
|
| 176 |
+
- **Gradio Team** - For Gradio 6 with MCP integration
|
| 177 |
+
- **HuggingFace** - For Spaces and dataset infrastructure
|
| 178 |
+
- **Google** - For Gemini API access
|
| 179 |
+
- **OpenTelemetry** - For standardized observability
|
| 180 |
+
|
| 181 |
+
---
|
| 182 |
+
|
| 183 |
+
*Last Updated: November 2025*
|
| 184 |
+
""")
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def create_traceverde_tab():
|
| 188 |
+
"""Create the TraceVerde documentation tab"""
|
| 189 |
+
return gr.Markdown("""
|
| 190 |
+
# π TraceVerde (genai_otel_instrument)
|
| 191 |
+
|
| 192 |
+
**Automatic OpenTelemetry Instrumentation for LLM Applications**
|
| 193 |
+
|
| 194 |
+
[](https://github.com/Mandark-droid/genai_otel_instrument)
|
| 195 |
+
[](https://pypi.org/project/genai-otel-instrument)
|
| 196 |
+
|
| 197 |
+
---
|
| 198 |
+
|
| 199 |
+
## What is TraceVerde?
|
| 200 |
+
|
| 201 |
+
TraceVerde is a **zero-code** OpenTelemetry instrumentation library for GenAI applications. It automatically captures:
|
| 202 |
+
|
| 203 |
+
- πΉ Every LLM call (token usage, cost, latency)
|
| 204 |
+
- πΉ Tool executions and results
|
| 205 |
+
- πΉ Agent reasoning steps
|
| 206 |
+
- πΉ GPU metrics (utilization, memory, temperature)
|
| 207 |
+
- πΉ CO2 emissions (via CodeCarbon integration)
|
| 208 |
+
|
| 209 |
+
All with **one import statement** - no code changes required!
|
| 210 |
+
|
| 211 |
+
---
|
| 212 |
+
|
| 213 |
+
## π¦ Installation
|
| 214 |
+
|
| 215 |
+
```bash
|
| 216 |
+
pip install genai-otel-instrument
|
| 217 |
+
|
| 218 |
+
# With GPU metrics support
|
| 219 |
+
pip install genai-otel-instrument[gpu]
|
| 220 |
+
|
| 221 |
+
# With CO2 emissions tracking
|
| 222 |
+
pip install genai-otel-instrument[carbon]
|
| 223 |
+
|
| 224 |
+
# All features
|
| 225 |
+
pip install genai-otel-instrument[all]
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
---
|
| 229 |
+
|
| 230 |
+
## π Quick Start
|
| 231 |
+
|
| 232 |
+
### Basic Usage
|
| 233 |
+
|
| 234 |
+
```python
|
| 235 |
+
from genai_otel_instrument import instrument_llm
|
| 236 |
+
from opentelemetry import trace
|
| 237 |
+
from opentelemetry.sdk.trace import TracerProvider
|
| 238 |
+
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor
|
| 239 |
+
|
| 240 |
+
# 1. Setup OpenTelemetry (one-time setup)
|
| 241 |
+
trace.set_tracer_provider(TracerProvider())
|
| 242 |
+
span_processor = SimpleSpanProcessor(ConsoleSpanExporter())
|
| 243 |
+
trace.get_tracer_provider().add_span_processor(span_processor)
|
| 244 |
+
|
| 245 |
+
# 2. Instrument all LLM frameworks (one line!)
|
| 246 |
+
instrument_llm(enable_content_capture=True)
|
| 247 |
+
|
| 248 |
+
# 3. Use your LLM framework normally - it's now traced!
|
| 249 |
+
from litellm import completion
|
| 250 |
+
|
| 251 |
+
response = completion(
|
| 252 |
+
model="gpt-4",
|
| 253 |
+
messages=[{"role": "user", "content": "Hello!"}]
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Traces are automatically captured and exported!
|
| 257 |
+
```
|
| 258 |
+
|
| 259 |
+
---
|
| 260 |
+
|
| 261 |
+
## π― Supported Frameworks
|
| 262 |
+
|
| 263 |
+
TraceVerde automatically instruments:
|
| 264 |
+
|
| 265 |
+
| Framework | Status | Import Required |
|
| 266 |
+
|-----------|--------|-----------------|
|
| 267 |
+
| **LiteLLM** | β
Full Support | `from litellm import completion` |
|
| 268 |
+
| **Transformers** | β
Full Support | `from transformers import pipeline` |
|
| 269 |
+
| **LangChain** | β
Full Support | `from langchain import ...` |
|
| 270 |
+
| **CrewAI** | β
Full Support | `from crewai import Agent` |
|
| 271 |
+
| **smolagents** | β
Full Support | `from smolagents import ...` |
|
| 272 |
+
| **OpenAI SDK** | β
Full Support | `from openai import OpenAI` |
|
| 273 |
+
|
| 274 |
+
**No code changes needed** - just import and use as normal!
|
| 275 |
+
|
| 276 |
+
---
|
| 277 |
+
|
| 278 |
+
## π What Gets Captured?
|
| 279 |
+
|
| 280 |
+
### LLM Spans
|
| 281 |
+
|
| 282 |
+
Every LLM call creates a span with:
|
| 283 |
+
|
| 284 |
+
```json
|
| 285 |
+
{
|
| 286 |
+
"span_name": "LLM Call - Reasoning",
|
| 287 |
+
"attributes": {
|
| 288 |
+
"gen_ai.system": "openai",
|
| 289 |
+
"gen_ai.request.model": "gpt-4",
|
| 290 |
+
"gen_ai.operation.name": "chat",
|
| 291 |
+
"gen_ai.usage.prompt_tokens": 78,
|
| 292 |
+
"gen_ai.usage.completion_tokens": 156,
|
| 293 |
+
"gen_ai.usage.total_tokens": 234,
|
| 294 |
+
"gen_ai.usage.cost.total": 0.0012,
|
| 295 |
+
"gen_ai.response.finish_reasons": ["stop"],
|
| 296 |
+
"gen_ai.request.temperature": 0.7
|
| 297 |
+
}
|
| 298 |
+
}
|
| 299 |
+
```
|
| 300 |
+
|
| 301 |
+
### Tool Spans
|
| 302 |
+
|
| 303 |
+
Tool executions are traced with:
|
| 304 |
+
|
| 305 |
+
```json
|
| 306 |
+
{
|
| 307 |
+
"span_name": "Tool Call - get_weather",
|
| 308 |
+
"attributes": {
|
| 309 |
+
"tool.name": "get_weather",
|
| 310 |
+
"tool.input": "{\\"location\\": \\"Tokyo\\"}",
|
| 311 |
+
"tool.output": "{\\"temp\\": \\"18Β°C\\"}",
|
| 312 |
+
"tool.latency_ms": 890
|
| 313 |
+
}
|
| 314 |
+
}
|
| 315 |
+
```
|
| 316 |
+
|
| 317 |
+
### GPU Metrics
|
| 318 |
+
|
| 319 |
+
When enabled, captures real-time GPU data:
|
| 320 |
+
|
| 321 |
+
```json
|
| 322 |
+
{
|
| 323 |
+
"metrics": [
|
| 324 |
+
{
|
| 325 |
+
"name": "gen_ai.gpu.utilization",
|
| 326 |
+
"value": 67.5,
|
| 327 |
+
"unit": "%",
|
| 328 |
+
"timestamp": "2025-11-18T14:23:00Z"
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"name": "gen_ai.gpu.memory.used",
|
| 332 |
+
"value": 512.34,
|
| 333 |
+
"unit": "MiB"
|
| 334 |
+
}
|
| 335 |
+
]
|
| 336 |
+
}
|
| 337 |
+
```
|
| 338 |
+
|
| 339 |
+
---
|
| 340 |
+
|
| 341 |
+
## π± CO2 Emissions Tracking
|
| 342 |
+
|
| 343 |
+
TraceVerde integrates with CodeCarbon for sustainability monitoring:
|
| 344 |
+
|
| 345 |
+
```python
|
| 346 |
+
from genai_otel_instrument import instrument_llm
|
| 347 |
+
|
| 348 |
+
# Enable CO2 tracking
|
| 349 |
+
instrument_llm(
|
| 350 |
+
enable_content_capture=True,
|
| 351 |
+
enable_carbon_tracking=True
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Your LLM calls now track carbon emissions!
|
| 355 |
+
```
|
| 356 |
+
|
| 357 |
+
**Captured Metrics:**
|
| 358 |
+
- π CO2 emissions (grams)
|
| 359 |
+
- β‘ Energy consumed (kWh)
|
| 360 |
+
- π Geographic region
|
| 361 |
+
- π» Hardware type (CPU/GPU)
|
| 362 |
+
|
| 363 |
+
---
|
| 364 |
+
|
| 365 |
+
## π§ Advanced Configuration
|
| 366 |
+
|
| 367 |
+
### Custom Exporters
|
| 368 |
+
|
| 369 |
+
```python
|
| 370 |
+
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
|
| 371 |
+
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
| 372 |
+
|
| 373 |
+
# Export to Jaeger/Tempo/etc
|
| 374 |
+
otlp_exporter = OTLPSpanExporter(endpoint="http://localhost:4317")
|
| 375 |
+
span_processor = BatchSpanProcessor(otlp_exporter)
|
| 376 |
+
trace.get_tracer_provider().add_span_processor(span_processor)
|
| 377 |
+
|
| 378 |
+
instrument_llm(enable_content_capture=True)
|
| 379 |
+
```
|
| 380 |
+
|
| 381 |
+
### Content Capture Control
|
| 382 |
+
|
| 383 |
+
```python
|
| 384 |
+
# Capture full prompts and responses (default: True)
|
| 385 |
+
instrument_llm(enable_content_capture=True)
|
| 386 |
+
|
| 387 |
+
# Disable for privacy/compliance
|
| 388 |
+
instrument_llm(enable_content_capture=False)
|
| 389 |
+
```
|
| 390 |
+
|
| 391 |
+
### GPU Metrics
|
| 392 |
+
|
| 393 |
+
```python
|
| 394 |
+
# Enable GPU monitoring (requires pynvml)
|
| 395 |
+
instrument_llm(
|
| 396 |
+
enable_content_capture=True,
|
| 397 |
+
enable_gpu_metrics=True,
|
| 398 |
+
gpu_poll_interval=1.0 # seconds
|
| 399 |
+
)
|
| 400 |
+
```
|
| 401 |
+
|
| 402 |
+
---
|
| 403 |
+
|
| 404 |
+
## π Integration with SMOLTRACE
|
| 405 |
+
|
| 406 |
+
TraceVerde powers SMOLTRACE's evaluation capabilities:
|
| 407 |
+
|
| 408 |
+
```python
|
| 409 |
+
# SMOLTRACE automatically uses TraceVerde for instrumentation
|
| 410 |
+
from smoltrace import evaluate_agent
|
| 411 |
+
|
| 412 |
+
results = evaluate_agent(
|
| 413 |
+
model="gpt-4",
|
| 414 |
+
agent_type="tool",
|
| 415 |
+
enable_otel=True # Uses TraceVerde under the hood!
|
| 416 |
+
)
|
| 417 |
+
```
|
| 418 |
+
|
| 419 |
+
---
|
| 420 |
+
|
| 421 |
+
## π― Use Cases
|
| 422 |
+
|
| 423 |
+
### 1. Development & Debugging
|
| 424 |
+
```python
|
| 425 |
+
# See exactly what your agent is doing
|
| 426 |
+
instrument_llm(enable_content_capture=True)
|
| 427 |
+
|
| 428 |
+
# Run your agent
|
| 429 |
+
agent.run("Complex task")
|
| 430 |
+
|
| 431 |
+
# View traces in console or Jaeger
|
| 432 |
+
```
|
| 433 |
+
|
| 434 |
+
### 2. Production Monitoring
|
| 435 |
+
```python
|
| 436 |
+
# Export to your observability platform
|
| 437 |
+
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
|
| 438 |
+
|
| 439 |
+
otlp_exporter = OTLPSpanExporter(endpoint="https://your-otel-collector")
|
| 440 |
+
# ... setup processor ...
|
| 441 |
+
|
| 442 |
+
instrument_llm(enable_content_capture=False) # Privacy mode
|
| 443 |
+
```
|
| 444 |
+
|
| 445 |
+
### 3. Cost Analysis
|
| 446 |
+
```python
|
| 447 |
+
# Track costs across all LLM calls
|
| 448 |
+
instrument_llm(enable_content_capture=True)
|
| 449 |
+
|
| 450 |
+
# Analyze cost per user/session/feature
|
| 451 |
+
# All costs automatically captured in span attributes
|
| 452 |
+
```
|
| 453 |
+
|
| 454 |
+
### 4. Sustainability Reporting
|
| 455 |
+
```python
|
| 456 |
+
# Monitor environmental impact
|
| 457 |
+
instrument_llm(
|
| 458 |
+
enable_carbon_tracking=True,
|
| 459 |
+
enable_gpu_metrics=True
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
# Generate CO2 reports from trace data
|
| 463 |
+
```
|
| 464 |
+
|
| 465 |
+
---
|
| 466 |
+
|
| 467 |
+
## π OpenTelemetry Standards
|
| 468 |
+
|
| 469 |
+
TraceVerde follows the **Gen AI Semantic Conventions**:
|
| 470 |
+
- β
Consistent attribute naming (`gen_ai.*`)
|
| 471 |
+
- β
Standard span structure
|
| 472 |
+
- β
Compatible with all OTEL collectors
|
| 473 |
+
- β
Works with Jaeger, Tempo, Datadog, New Relic, etc.
|
| 474 |
+
|
| 475 |
+
---
|
| 476 |
+
|
| 477 |
+
## π Resources
|
| 478 |
+
|
| 479 |
+
- **GitHub**: [github.com/Mandark-droid/genai_otel_instrument](https://github.com/Mandark-droid/genai_otel_instrument)
|
| 480 |
+
- **PyPI**: [pypi.org/project/genai-otel-instrument](https://pypi.org/project/genai-otel-instrument)
|
| 481 |
+
- **Examples**: [github.com/Mandark-droid/genai_otel_instrument/examples](https://github.com/Mandark-droid/genai_otel_instrument/tree/main/examples)
|
| 482 |
+
- **OpenTelemetry Docs**: [opentelemetry.io](https://opentelemetry.io)
|
| 483 |
+
|
| 484 |
+
---
|
| 485 |
+
|
| 486 |
+
## π Troubleshooting
|
| 487 |
+
|
| 488 |
+
### Common Issues
|
| 489 |
+
|
| 490 |
+
**Q: Traces not appearing?**
|
| 491 |
+
```python
|
| 492 |
+
# Make sure you setup a tracer provider first
|
| 493 |
+
from opentelemetry import trace
|
| 494 |
+
from opentelemetry.sdk.trace import TracerProvider
|
| 495 |
+
|
| 496 |
+
trace.set_tracer_provider(TracerProvider())
|
| 497 |
+
```
|
| 498 |
+
|
| 499 |
+
**Q: GPU metrics not working?**
|
| 500 |
+
```bash
|
| 501 |
+
# Install GPU support
|
| 502 |
+
pip install genai-otel-instrument[gpu]
|
| 503 |
+
|
| 504 |
+
# Verify NVIDIA drivers installed
|
| 505 |
+
nvidia-smi
|
| 506 |
+
```
|
| 507 |
+
|
| 508 |
+
**Q: Content capture not working?**
|
| 509 |
+
```python
|
| 510 |
+
# Explicitly enable content capture
|
| 511 |
+
instrument_llm(enable_content_capture=True)
|
| 512 |
+
```
|
| 513 |
+
|
| 514 |
+
---
|
| 515 |
+
|
| 516 |
+
## π License
|
| 517 |
+
|
| 518 |
+
**AGPL-3.0** - Open source and free to use
|
| 519 |
+
|
| 520 |
+
---
|
| 521 |
+
|
| 522 |
+
## π€ Contributing
|
| 523 |
+
|
| 524 |
+
Contributions welcome!
|
| 525 |
+
- Report bugs on GitHub Issues
|
| 526 |
+
- Submit PRs for new framework support
|
| 527 |
+
- Share your use cases
|
| 528 |
+
|
| 529 |
+
---
|
| 530 |
+
|
| 531 |
+
*TraceVerde - Making AI agents observable, one trace at a time* π
|
| 532 |
+
""")
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
def create_smoltrace_tab():
|
| 536 |
+
"""Create the SMOLTRACE documentation tab"""
|
| 537 |
+
return gr.Markdown("""
|
| 538 |
+
# π SMOLTRACE
|
| 539 |
+
|
| 540 |
+
**Lightweight Agent Evaluation Engine with Built-in OpenTelemetry Tracing**
|
| 541 |
+
|
| 542 |
+
[](https://github.com/Mandark-droid/SMOLTRACE)
|
| 543 |
+
[](https://pypi.org/project/smoltrace/)
|
| 544 |
+
|
| 545 |
+
---
|
| 546 |
+
|
| 547 |
+
## What is SMOLTRACE?
|
| 548 |
+
|
| 549 |
+
SMOLTRACE is a **production-ready** evaluation framework for AI agents that:
|
| 550 |
+
|
| 551 |
+
- β
Evaluates agents across tool usage, code execution, and both
|
| 552 |
+
- β
Supports both API models (via LiteLLM) and local models (via Transformers)
|
| 553 |
+
- β
Automatically captures OpenTelemetry traces using TraceVerde
|
| 554 |
+
- β
Generates structured datasets for HuggingFace
|
| 555 |
+
- β
Tracks costs, GPU metrics, and CO2 emissions
|
| 556 |
+
|
| 557 |
+
**Goal**: Become HuggingFace's standard agent evaluation platform
|
| 558 |
+
|
| 559 |
+
---
|
| 560 |
+
|
| 561 |
+
## π¦ Installation
|
| 562 |
+
|
| 563 |
+
```bash
|
| 564 |
+
# Basic installation
|
| 565 |
+
pip install smoltrace
|
| 566 |
+
|
| 567 |
+
# With OpenTelemetry support
|
| 568 |
+
pip install smoltrace[otel]
|
| 569 |
+
|
| 570 |
+
# With GPU metrics
|
| 571 |
+
pip install smoltrace[otel,gpu]
|
| 572 |
+
|
| 573 |
+
# Everything
|
| 574 |
+
pip install smoltrace[all]
|
| 575 |
+
```
|
| 576 |
+
|
| 577 |
+
---
|
| 578 |
+
|
| 579 |
+
## π Quick Start
|
| 580 |
+
|
| 581 |
+
### Command Line
|
| 582 |
+
|
| 583 |
+
```bash
|
| 584 |
+
# Evaluate GPT-4 as a tool agent
|
| 585 |
+
smoltrace-eval \\
|
| 586 |
+
--model openai/gpt-4 \\
|
| 587 |
+
--provider litellm \\
|
| 588 |
+
--agent-type tool \\
|
| 589 |
+
--enable-otel
|
| 590 |
+
|
| 591 |
+
# Evaluate local Llama model
|
| 592 |
+
smoltrace-eval \\
|
| 593 |
+
--model meta-llama/Llama-3.1-8B \\
|
| 594 |
+
--provider transformers \\
|
| 595 |
+
--agent-type both \\
|
| 596 |
+
--enable-otel \\
|
| 597 |
+
--enable-gpu-metrics
|
| 598 |
+
```
|
| 599 |
+
|
| 600 |
+
### Python API
|
| 601 |
+
|
| 602 |
+
```python
|
| 603 |
+
from smoltrace import evaluate_agent
|
| 604 |
+
|
| 605 |
+
# Run evaluation
|
| 606 |
+
results = evaluate_agent(
|
| 607 |
+
model="openai/gpt-4",
|
| 608 |
+
provider="litellm",
|
| 609 |
+
agent_type="tool",
|
| 610 |
+
enable_otel=True,
|
| 611 |
+
num_tests=100
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
# Access results
|
| 615 |
+
print(f"Success Rate: {results.success_rate}%")
|
| 616 |
+
print(f"Total Cost: ${results.total_cost}")
|
| 617 |
+
print(f"Avg Duration: {results.avg_duration_ms}ms")
|
| 618 |
+
|
| 619 |
+
# Upload to HuggingFace
|
| 620 |
+
results.upload_to_hf(
|
| 621 |
+
results_repo="username/agent-results-gpt4",
|
| 622 |
+
traces_repo="username/agent-traces-gpt4",
|
| 623 |
+
leaderboard_repo="username/agent-leaderboard"
|
| 624 |
+
)
|
| 625 |
+
```
|
| 626 |
+
|
| 627 |
+
---
|
| 628 |
+
|
| 629 |
+
## π― Evaluation Types
|
| 630 |
+
|
| 631 |
+
### 1. Tool Agent
|
| 632 |
+
Tests ability to use external tools:
|
| 633 |
+
```bash
|
| 634 |
+
smoltrace-eval --model gpt-4 --agent-type tool
|
| 635 |
+
```
|
| 636 |
+
|
| 637 |
+
**Example Task**: "What's the weather in Tokyo?"
|
| 638 |
+
- Agent must call `get_weather` tool
|
| 639 |
+
- Verify correct tool selection
|
| 640 |
+
- Check response quality
|
| 641 |
+
|
| 642 |
+
### 2. Code Agent
|
| 643 |
+
Tests code generation and execution:
|
| 644 |
+
```bash
|
| 645 |
+
smoltrace-eval --model gpt-4 --agent-type code
|
| 646 |
+
```
|
| 647 |
+
|
| 648 |
+
**Example Task**: "Calculate the sum of first 10 prime numbers"
|
| 649 |
+
- Agent must generate Python code
|
| 650 |
+
- Execute code safely
|
| 651 |
+
- Return correct result
|
| 652 |
+
|
| 653 |
+
### 3. Both (Combined)
|
| 654 |
+
Tests comprehensive agent capabilities:
|
| 655 |
+
```bash
|
| 656 |
+
smoltrace-eval --model gpt-4 --agent-type both
|
| 657 |
+
```
|
| 658 |
+
|
| 659 |
+
**Tests both tool usage AND code generation**
|
| 660 |
+
|
| 661 |
+
---
|
| 662 |
+
|
| 663 |
+
## π What Gets Generated?
|
| 664 |
+
|
| 665 |
+
SMOLTRACE creates **4 structured datasets** on HuggingFace:
|
| 666 |
+
|
| 667 |
+
### 1. Leaderboard Dataset
|
| 668 |
+
Aggregate statistics for all evaluation runs:
|
| 669 |
+
|
| 670 |
+
```python
|
| 671 |
+
{
|
| 672 |
+
"run_id": "uuid",
|
| 673 |
+
"model": "openai/gpt-4",
|
| 674 |
+
"agent_type": "tool",
|
| 675 |
+
"provider": "litellm",
|
| 676 |
+
|
| 677 |
+
# Performance
|
| 678 |
+
"success_rate": 95.8,
|
| 679 |
+
"total_tests": 100,
|
| 680 |
+
"avg_duration_ms": 3200.0,
|
| 681 |
+
|
| 682 |
+
# Cost & Resources
|
| 683 |
+
"total_tokens": 15000,
|
| 684 |
+
"total_cost_usd": 0.05,
|
| 685 |
+
"co2_emissions_g": 0.22,
|
| 686 |
+
"gpu_utilization_avg": 67.5,
|
| 687 |
+
|
| 688 |
+
# Dataset References
|
| 689 |
+
"results_dataset": "username/agent-results-gpt4",
|
| 690 |
+
"traces_dataset": "username/agent-traces-gpt4",
|
| 691 |
+
"metrics_dataset": "username/agent-metrics-gpt4",
|
| 692 |
+
|
| 693 |
+
# Metadata
|
| 694 |
+
"timestamp": "2025-11-18T14:23:00Z",
|
| 695 |
+
"submitted_by": "username"
|
| 696 |
+
}
|
| 697 |
+
```
|
| 698 |
+
|
| 699 |
+
### 2. Results Dataset
|
| 700 |
+
Individual test case results:
|
| 701 |
+
|
| 702 |
+
```python
|
| 703 |
+
{
|
| 704 |
+
"run_id": "uuid",
|
| 705 |
+
"task_id": "task_001",
|
| 706 |
+
"test_index": 0,
|
| 707 |
+
|
| 708 |
+
# Test Case
|
| 709 |
+
"prompt": "What's the weather in Tokyo?",
|
| 710 |
+
"expected_tool": "get_weather",
|
| 711 |
+
|
| 712 |
+
# Result
|
| 713 |
+
"success": true,
|
| 714 |
+
"response": "The weather in Tokyo is 18Β°C and clear.",
|
| 715 |
+
"tool_called": "get_weather",
|
| 716 |
+
|
| 717 |
+
# Metrics
|
| 718 |
+
"execution_time_ms": 2450.0,
|
| 719 |
+
"total_tokens": 234,
|
| 720 |
+
"cost_usd": 0.0012,
|
| 721 |
+
|
| 722 |
+
# Trace Reference
|
| 723 |
+
"trace_id": "trace_abc123"
|
| 724 |
+
}
|
| 725 |
+
```
|
| 726 |
+
|
| 727 |
+
### 3. Traces Dataset
|
| 728 |
+
Full OpenTelemetry traces:
|
| 729 |
+
|
| 730 |
+
```python
|
| 731 |
+
{
|
| 732 |
+
"trace_id": "trace_abc123",
|
| 733 |
+
"run_id": "uuid",
|
| 734 |
+
"spans": [
|
| 735 |
+
{
|
| 736 |
+
"spanId": "span_001",
|
| 737 |
+
"name": "Agent Execution",
|
| 738 |
+
"startTime": "2025-11-18T14:23:01.000Z",
|
| 739 |
+
"endTime": "2025-11-18T14:23:03.450Z",
|
| 740 |
+
"attributes": {
|
| 741 |
+
"agent.type": "tool",
|
| 742 |
+
"gen_ai.system": "openai",
|
| 743 |
+
"gen_ai.request.model": "gpt-4"
|
| 744 |
+
}
|
| 745 |
+
},
|
| 746 |
+
# ... more spans ...
|
| 747 |
+
]
|
| 748 |
+
}
|
| 749 |
+
```
|
| 750 |
+
|
| 751 |
+
### 4. Metrics Dataset
|
| 752 |
+
GPU metrics and performance data:
|
| 753 |
+
|
| 754 |
+
```python
|
| 755 |
+
{
|
| 756 |
+
"run_id": "uuid",
|
| 757 |
+
"trace_id": "trace_abc123",
|
| 758 |
+
"metrics": [
|
| 759 |
+
{
|
| 760 |
+
"name": "gen_ai.gpu.utilization",
|
| 761 |
+
"value": 67.5,
|
| 762 |
+
"unit": "%",
|
| 763 |
+
"timestamp": "2025-11-18T14:23:01.000Z"
|
| 764 |
+
},
|
| 765 |
+
{
|
| 766 |
+
"name": "gen_ai.co2.emissions",
|
| 767 |
+
"value": 0.22,
|
| 768 |
+
"unit": "gCO2e"
|
| 769 |
+
}
|
| 770 |
+
]
|
| 771 |
+
}
|
| 772 |
+
```
|
| 773 |
+
|
| 774 |
+
---
|
| 775 |
+
|
| 776 |
+
## π§ Configuration Options
|
| 777 |
+
|
| 778 |
+
### Model Selection
|
| 779 |
+
|
| 780 |
+
```bash
|
| 781 |
+
# API Models (via LiteLLM)
|
| 782 |
+
--model openai/gpt-4
|
| 783 |
+
--model anthropic/claude-3-5-sonnet
|
| 784 |
+
--model google/gemini-pro
|
| 785 |
+
|
| 786 |
+
# Local Models (via Transformers)
|
| 787 |
+
--model meta-llama/Llama-3.1-8B
|
| 788 |
+
--model mistralai/Mistral-7B-v0.1
|
| 789 |
+
```
|
| 790 |
+
|
| 791 |
+
### Provider Selection
|
| 792 |
+
|
| 793 |
+
```bash
|
| 794 |
+
--provider litellm # For API models
|
| 795 |
+
--provider transformers # For local models
|
| 796 |
+
```
|
| 797 |
+
|
| 798 |
+
### Hardware Selection
|
| 799 |
+
|
| 800 |
+
```bash
|
| 801 |
+
# Automatic (default)
|
| 802 |
+
# API models β CPU
|
| 803 |
+
# Local models β GPU if available
|
| 804 |
+
|
| 805 |
+
# Manual override
|
| 806 |
+
--hardware cpu
|
| 807 |
+
--hardware gpu_a10
|
| 808 |
+
--hardware gpu_h200
|
| 809 |
+
```
|
| 810 |
+
|
| 811 |
+
### OpenTelemetry Options
|
| 812 |
+
|
| 813 |
+
```bash
|
| 814 |
+
--enable-otel # Enable tracing
|
| 815 |
+
--enable-gpu-metrics # Capture GPU data
|
| 816 |
+
--enable-carbon-tracking # Track CO2 emissions
|
| 817 |
+
```
|
| 818 |
+
|
| 819 |
+
---
|
| 820 |
+
|
| 821 |
+
## ποΈ Integration with HuggingFace Jobs
|
| 822 |
+
|
| 823 |
+
SMOLTRACE works seamlessly with HuggingFace Jobs:
|
| 824 |
+
|
| 825 |
+
```yaml
|
| 826 |
+
# job.yaml
|
| 827 |
+
name: SMOLTRACE Evaluation
|
| 828 |
+
hardware: gpu-h200
|
| 829 |
+
environment:
|
| 830 |
+
MODEL: meta-llama/Llama-3.1-8B
|
| 831 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 832 |
+
command: |
|
| 833 |
+
pip install smoltrace[otel,gpu]
|
| 834 |
+
smoltrace-eval \\
|
| 835 |
+
--model $MODEL \\
|
| 836 |
+
--provider transformers \\
|
| 837 |
+
--agent-type both \\
|
| 838 |
+
--enable-otel \\
|
| 839 |
+
--enable-gpu-metrics \\
|
| 840 |
+
--results-repo ${{ username }}/agent-results \\
|
| 841 |
+
--leaderboard-repo huggingface/smolagents-leaderboard
|
| 842 |
+
```
|
| 843 |
+
|
| 844 |
+
**Benefits:**
|
| 845 |
+
- π° **H200 GPUs**: 2x faster evaluation
|
| 846 |
+
- π **Automatic Upload**: Results β HuggingFace datasets
|
| 847 |
+
- π **Reproducible**: Same environment every time
|
| 848 |
+
|
| 849 |
+
---
|
| 850 |
+
|
| 851 |
+
## π Integration with TraceMind-AI
|
| 852 |
+
|
| 853 |
+
SMOLTRACE datasets power the TraceMind-AI interface:
|
| 854 |
+
|
| 855 |
+
```
|
| 856 |
+
SMOLTRACE Evaluation
|
| 857 |
+
β
|
| 858 |
+
4 Datasets Created
|
| 859 |
+
β
|
| 860 |
+
ββββββββββ΄βββββββββ
|
| 861 |
+
β β
|
| 862 |
+
β TraceMind-AI β β You are here!
|
| 863 |
+
β (Gradio UI) β
|
| 864 |
+
β β
|
| 865 |
+
βββββββββββββββββββ
|
| 866 |
+
```
|
| 867 |
+
|
| 868 |
+
**What TraceMind-AI Shows:**
|
| 869 |
+
- π **Leaderboard**: All evaluation runs
|
| 870 |
+
- π **Run Detail**: Individual test cases
|
| 871 |
+
- π΅οΈ **Trace Detail**: OpenTelemetry visualization
|
| 872 |
+
- π€ **Agent Chat**: MCP-powered analysis
|
| 873 |
+
|
| 874 |
+
---
|
| 875 |
+
|
| 876 |
+
## π― Best Practices
|
| 877 |
+
|
| 878 |
+
### 1. Start Small
|
| 879 |
+
```bash
|
| 880 |
+
# Test with 10 runs first
|
| 881 |
+
smoltrace-eval --model gpt-4 --num-tests 10
|
| 882 |
+
|
| 883 |
+
# Scale up after validation
|
| 884 |
+
smoltrace-eval --model gpt-4 --num-tests 1000
|
| 885 |
+
```
|
| 886 |
+
|
| 887 |
+
### 2. Use Appropriate Hardware
|
| 888 |
+
```bash
|
| 889 |
+
# API models β CPU (no GPU needed)
|
| 890 |
+
smoltrace-eval --model openai/gpt-4 --hardware cpu
|
| 891 |
+
|
| 892 |
+
# Local models β GPU (faster)
|
| 893 |
+
smoltrace-eval --model meta-llama/Llama-3.1-8B --hardware gpu_h200
|
| 894 |
+
```
|
| 895 |
+
|
| 896 |
+
### 3. Enable Full Observability
|
| 897 |
+
```bash
|
| 898 |
+
# Capture everything
|
| 899 |
+
smoltrace-eval \\
|
| 900 |
+
--model your-model \\
|
| 901 |
+
--enable-otel \\
|
| 902 |
+
--enable-gpu-metrics \\
|
| 903 |
+
--enable-carbon-tracking
|
| 904 |
+
```
|
| 905 |
+
|
| 906 |
+
### 4. Organize Your Datasets
|
| 907 |
+
```bash
|
| 908 |
+
# Use descriptive repo names
|
| 909 |
+
--results-repo username/results-gpt4-tool-20251118
|
| 910 |
+
--traces-repo username/traces-gpt4-tool-20251118
|
| 911 |
+
--leaderboard-repo username/agent-leaderboard
|
| 912 |
+
```
|
| 913 |
+
|
| 914 |
+
---
|
| 915 |
+
|
| 916 |
+
## π Cost Estimation
|
| 917 |
+
|
| 918 |
+
Before running evaluations, estimate costs:
|
| 919 |
+
|
| 920 |
+
```python
|
| 921 |
+
from smoltrace import estimate_cost
|
| 922 |
+
|
| 923 |
+
# API model
|
| 924 |
+
api_cost = estimate_cost(
|
| 925 |
+
model="openai/gpt-4",
|
| 926 |
+
num_tests=1000,
|
| 927 |
+
agent_type="tool"
|
| 928 |
+
)
|
| 929 |
+
print(f"Estimated cost: ${api_cost.total_cost}")
|
| 930 |
+
|
| 931 |
+
# GPU job
|
| 932 |
+
gpu_cost = estimate_cost(
|
| 933 |
+
model="meta-llama/Llama-3.1-8B",
|
| 934 |
+
num_tests=1000,
|
| 935 |
+
hardware="gpu_h200"
|
| 936 |
+
)
|
| 937 |
+
print(f"Estimated cost: ${gpu_cost.total_cost}")
|
| 938 |
+
print(f"Estimated time: {gpu_cost.duration_minutes} minutes")
|
| 939 |
+
```
|
| 940 |
+
|
| 941 |
+
---
|
| 942 |
+
|
| 943 |
+
## π Architecture
|
| 944 |
+
|
| 945 |
+
```
|
| 946 |
+
βββββββββββββββββββββββββββββββββββββββββββ
|
| 947 |
+
β SMOLTRACE Core β
|
| 948 |
+
βββββββββββββββββββββββββββββββββββββββββββ€
|
| 949 |
+
β β
|
| 950 |
+
β ββββββββββββββββ ββββββββββββββββ β
|
| 951 |
+
β β LiteLLM β β Transformers β β
|
| 952 |
+
β β Provider β β Provider β β
|
| 953 |
+
β ββββββββ¬ββββββββ ββββββββ¬ββββββββ β
|
| 954 |
+
β β β β
|
| 955 |
+
β ββββββββββ¬βββββββββββ β
|
| 956 |
+
β β β
|
| 957 |
+
β ββββββββββββββββ β
|
| 958 |
+
β β TraceVerde β β
|
| 959 |
+
β β (OTEL) β β
|
| 960 |
+
β ββββββββ¬ββββββββ β
|
| 961 |
+
β β β
|
| 962 |
+
β ββββββββββββββββ β
|
| 963 |
+
β β Dataset β β
|
| 964 |
+
οΏ½οΏ½οΏ½ β Generator β β
|
| 965 |
+
β ββββββββ¬ββββββββ β
|
| 966 |
+
β β β
|
| 967 |
+
β βββββββββββββββββββββββββ β
|
| 968 |
+
β β HuggingFace Upload β β
|
| 969 |
+
β βββββββββββββββββββββββββ β
|
| 970 |
+
β β
|
| 971 |
+
βββββββββββββββββββββββββββββββββββββββββββ
|
| 972 |
+
```
|
| 973 |
+
|
| 974 |
+
---
|
| 975 |
+
|
| 976 |
+
## π Resources
|
| 977 |
+
|
| 978 |
+
- **GitHub**: [github.com/Mandark-droid/SMOLTRACE](https://github.com/Mandark-droid/SMOLTRACE)
|
| 979 |
+
- **PyPI**: [pypi.org/project/smoltrace](https://pypi.org/project/smoltrace/)
|
| 980 |
+
- **Examples**: [github.com/Mandark-droid/SMOLTRACE/examples](https://github.com/Mandark-droid/SMOLTRACE/tree/main/examples)
|
| 981 |
+
- **Dataset Schema**: [github.com/Mandark-droid/SMOLTRACE/docs/schema.md](https://github.com/Mandark-droid/SMOLTRACE/blob/main/docs/schema.md)
|
| 982 |
+
|
| 983 |
+
---
|
| 984 |
+
|
| 985 |
+
## π Troubleshooting
|
| 986 |
+
|
| 987 |
+
### Common Issues
|
| 988 |
+
|
| 989 |
+
**Q: Evaluation is slow?**
|
| 990 |
+
```bash
|
| 991 |
+
# Use GPU for local models
|
| 992 |
+
--hardware gpu_h200
|
| 993 |
+
|
| 994 |
+
# Or reduce test count
|
| 995 |
+
--num-tests 10
|
| 996 |
+
```
|
| 997 |
+
|
| 998 |
+
**Q: Traces not captured?**
|
| 999 |
+
```bash
|
| 1000 |
+
# Make sure OTEL is enabled
|
| 1001 |
+
--enable-otel
|
| 1002 |
+
```
|
| 1003 |
+
|
| 1004 |
+
**Q: Upload to HF failing?**
|
| 1005 |
+
```bash
|
| 1006 |
+
# Check HF token
|
| 1007 |
+
export HF_TOKEN=your_token_here
|
| 1008 |
+
|
| 1009 |
+
# Verify repo exists or allow auto-create
|
| 1010 |
+
```
|
| 1011 |
+
|
| 1012 |
+
---
|
| 1013 |
+
|
| 1014 |
+
## π License
|
| 1015 |
+
|
| 1016 |
+
**AGPL-3.0** - Open source and free to use
|
| 1017 |
+
|
| 1018 |
+
---
|
| 1019 |
+
|
| 1020 |
+
## π€ Contributing
|
| 1021 |
+
|
| 1022 |
+
We welcome contributions!
|
| 1023 |
+
- Add new agent types
|
| 1024 |
+
- Support more frameworks
|
| 1025 |
+
- Improve evaluation metrics
|
| 1026 |
+
- Optimize performance
|
| 1027 |
+
|
| 1028 |
+
---
|
| 1029 |
+
|
| 1030 |
+
*SMOLTRACE - Lightweight evaluation for heavyweight results* π
|
| 1031 |
+
""")
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
def create_mcp_server_tab():
|
| 1035 |
+
"""Create the TraceMind-MCP-Server documentation tab"""
|
| 1036 |
+
return gr.Markdown("""
|
| 1037 |
+
# π TraceMind-MCP-Server
|
| 1038 |
+
|
| 1039 |
+
**Building MCP: Intelligent Analysis Tools for Agent Evaluation**
|
| 1040 |
+
|
| 1041 |
+
[](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
|
| 1042 |
+
[-blue)](https://github.com/modelcontextprotocol/hackathon)
|
| 1043 |
+
|
| 1044 |
+
---
|
| 1045 |
+
|
| 1046 |
+
## What is TraceMind-MCP-Server?
|
| 1047 |
+
|
| 1048 |
+
TraceMind-MCP-Server is a **Track 1 (Building MCP)** submission that provides MCP tools for intelligent agent evaluation analysis.
|
| 1049 |
+
|
| 1050 |
+
**Key Features:**
|
| 1051 |
+
- π€ Powered by Google Gemini 2.5 Pro
|
| 1052 |
+
- π Standards-compliant MCP implementation
|
| 1053 |
+
- π Analyzes HuggingFace evaluation datasets
|
| 1054 |
+
- π‘ Provides actionable insights and recommendations
|
| 1055 |
+
- π Accessible via SSE transport for Gradio integration
|
| 1056 |
+
|
| 1057 |
+
---
|
| 1058 |
+
|
| 1059 |
+
## π οΈ MCP Tools Provided
|
| 1060 |
+
|
| 1061 |
+
### 1. `analyze_leaderboard`
|
| 1062 |
+
|
| 1063 |
+
**Purpose**: Generate AI-powered insights about evaluation leaderboard data
|
| 1064 |
+
|
| 1065 |
+
**Input Schema:**
|
| 1066 |
+
```json
|
| 1067 |
+
{
|
| 1068 |
+
"leaderboard_repo": "string", // HF dataset (default: kshitijthakkar/smoltrace-leaderboard)
|
| 1069 |
+
"metric_focus": "string", // "overall" | "accuracy" | "cost" | "latency" | "co2"
|
| 1070 |
+
"time_range": "string", // "last_week" | "last_month" | "all_time"
|
| 1071 |
+
"top_n": "integer" // Number of top models to highlight
|
| 1072 |
+
}
|
| 1073 |
+
```
|
| 1074 |
+
|
| 1075 |
+
**What It Does:**
|
| 1076 |
+
1. Fetches leaderboard dataset from HuggingFace
|
| 1077 |
+
2. Filters by time range
|
| 1078 |
+
3. Analyzes trends based on metric focus
|
| 1079 |
+
4. Uses Gemini to generate insights
|
| 1080 |
+
5. Returns markdown-formatted analysis
|
| 1081 |
+
|
| 1082 |
+
**Example Output:**
|
| 1083 |
+
```markdown
|
| 1084 |
+
Based on 247 evaluations in the past week:
|
| 1085 |
+
|
| 1086 |
+
**Top Performers:**
|
| 1087 |
+
- GPT-4 leads in accuracy at 95.8% but costs $0.05 per run
|
| 1088 |
+
- Llama-3.1-8B offers best cost/performance at 93.4% accuracy for $0.002
|
| 1089 |
+
- Qwen3-MoE is fastest at 1.7s average duration
|
| 1090 |
+
|
| 1091 |
+
**Trends:**
|
| 1092 |
+
- API models dominate accuracy rankings
|
| 1093 |
+
- GPU models are 10x more cost-effective
|
| 1094 |
+
- H200 jobs show 2x faster execution vs A10
|
| 1095 |
+
|
| 1096 |
+
**Recommendations:**
|
| 1097 |
+
- For production: Consider Llama-3.1-8B for cost-sensitive workloads
|
| 1098 |
+
- For maximum accuracy: GPT-4 remains state-of-the-art
|
| 1099 |
+
- For eco-friendly: Claude-3-Haiku has lowest CO2 emissions
|
| 1100 |
+
```
|
| 1101 |
+
|
| 1102 |
+
---
|
| 1103 |
+
|
| 1104 |
+
### 2. `estimate_cost`
|
| 1105 |
+
|
| 1106 |
+
**Purpose**: Estimate evaluation costs with hardware recommendations
|
| 1107 |
+
|
| 1108 |
+
**Input Schema:**
|
| 1109 |
+
```json
|
| 1110 |
+
{
|
| 1111 |
+
"model": "string", // Model name (e.g., "openai/gpt-4")
|
| 1112 |
+
"agent_type": "string", // "tool" | "code" | "both"
|
| 1113 |
+
"num_tests": "integer", // Number of test cases (default: 100)
|
| 1114 |
+
"hardware": "string" // "cpu" | "gpu_a10" | "gpu_h200" (optional)
|
| 1115 |
+
}
|
| 1116 |
+
```
|
| 1117 |
+
|
| 1118 |
+
**What It Does:**
|
| 1119 |
+
1. Determines if model is API or local
|
| 1120 |
+
2. Calculates token usage estimates
|
| 1121 |
+
3. Computes costs (API pricing or GPU time)
|
| 1122 |
+
4. Estimates duration and CO2 emissions
|
| 1123 |
+
5. Provides hardware recommendations
|
| 1124 |
+
|
| 1125 |
+
**Example Output:**
|
| 1126 |
+
```markdown
|
| 1127 |
+
## Cost Estimation: openai/gpt-4 (Tool Agent, 100 tests)
|
| 1128 |
+
|
| 1129 |
+
**Hardware**: CPU (API model)
|
| 1130 |
+
|
| 1131 |
+
**Cost Breakdown:**
|
| 1132 |
+
- Total Tokens: ~15,000
|
| 1133 |
+
- Prompt Tokens: ~5,000 ($0.03)
|
| 1134 |
+
- Completion Tokens: ~10,000 ($0.06)
|
| 1135 |
+
- **Total Cost: $0.09**
|
| 1136 |
+
|
| 1137 |
+
**Time Estimate:**
|
| 1138 |
+
- Average per test: 3.2s
|
| 1139 |
+
- Total duration: ~5.3 minutes
|
| 1140 |
+
|
| 1141 |
+
**CO2 Emissions:**
|
| 1142 |
+
- Estimated: 0.45g CO2e
|
| 1143 |
+
|
| 1144 |
+
**Recommendations:**
|
| 1145 |
+
- β
Good choice for accuracy-critical applications
|
| 1146 |
+
- β οΈ Consider Llama-3.1-8B for cost savings (10x cheaper)
|
| 1147 |
+
- π‘ Use caching to reduce repeated API calls
|
| 1148 |
+
```
|
| 1149 |
+
|
| 1150 |
+
---
|
| 1151 |
+
|
| 1152 |
+
### 3. `debug_trace`
|
| 1153 |
+
|
| 1154 |
+
**Purpose**: Answer questions about agent execution traces
|
| 1155 |
+
|
| 1156 |
+
**Input Schema:**
|
| 1157 |
+
```json
|
| 1158 |
+
{
|
| 1159 |
+
"trace_dataset": "string", // HF dataset with OTEL traces
|
| 1160 |
+
"trace_id": "string", // Specific trace to analyze
|
| 1161 |
+
"question": "string", // Question about the trace
|
| 1162 |
+
"include_metrics": "boolean" // Include GPU metrics (default: true)
|
| 1163 |
+
}
|
| 1164 |
+
```
|
| 1165 |
+
|
| 1166 |
+
**What It Does:**
|
| 1167 |
+
1. Fetches trace data from HuggingFace
|
| 1168 |
+
2. Parses OpenTelemetry spans
|
| 1169 |
+
3. Analyzes execution flow
|
| 1170 |
+
4. Uses Gemini to answer questions
|
| 1171 |
+
5. Provides span-level details
|
| 1172 |
+
|
| 1173 |
+
**Example Output:**
|
| 1174 |
+
```markdown
|
| 1175 |
+
## Why was the tool called twice?
|
| 1176 |
+
|
| 1177 |
+
Based on trace analysis for `trace_abc123`:
|
| 1178 |
+
|
| 1179 |
+
**First Tool Call (span_003)**:
|
| 1180 |
+
- Time: 14:23:19.000
|
| 1181 |
+
- Tool: `search_web`
|
| 1182 |
+
- Input: {"query": "latest AI news"}
|
| 1183 |
+
- Result: 5 results returned
|
| 1184 |
+
- Issue: Results were 2 days old
|
| 1185 |
+
|
| 1186 |
+
**Second Tool Call (span_005)**:
|
| 1187 |
+
- Time: 14:23:21.200
|
| 1188 |
+
- Tool: `search_web`
|
| 1189 |
+
- Input: {"query": "latest AI news today"}
|
| 1190 |
+
- Reasoning: LLM determined first results were outdated
|
| 1191 |
+
- Duration: 1200ms
|
| 1192 |
+
|
| 1193 |
+
**Why Twice?**
|
| 1194 |
+
The agent's reasoning chain shows it initially received outdated results.
|
| 1195 |
+
The LLM then decided to refine the query with "today" keyword to get
|
| 1196 |
+
more recent data.
|
| 1197 |
+
|
| 1198 |
+
**Performance Impact:**
|
| 1199 |
+
- Added 2.09s to total execution
|
| 1200 |
+
- Cost increase: +$0.0003
|
| 1201 |
+
- This is normal for agents with iterative reasoning
|
| 1202 |
+
|
| 1203 |
+
**Recommendation:**
|
| 1204 |
+
Consider adding date filters to initial tool calls to avoid retries.
|
| 1205 |
+
```
|
| 1206 |
+
|
| 1207 |
+
---
|
| 1208 |
+
|
| 1209 |
+
### 4. `compare_runs`
|
| 1210 |
+
|
| 1211 |
+
**Purpose**: Side-by-side comparison of evaluation runs
|
| 1212 |
+
|
| 1213 |
+
**Input Schema:**
|
| 1214 |
+
```json
|
| 1215 |
+
{
|
| 1216 |
+
"leaderboard_repo": "string", // HF leaderboard dataset
|
| 1217 |
+
"run_id_1": "string", // First run ID
|
| 1218 |
+
"run_id_2": "string", // Second run ID
|
| 1219 |
+
"comparison_focus": "string" // "overall" | "cost" | "accuracy" | "speed"
|
| 1220 |
+
}
|
| 1221 |
+
```
|
| 1222 |
+
|
| 1223 |
+
**What It Does:**
|
| 1224 |
+
1. Fetches data for both runs
|
| 1225 |
+
2. Compares key metrics
|
| 1226 |
+
3. Identifies strengths/weaknesses
|
| 1227 |
+
4. Provides recommendations
|
| 1228 |
+
|
| 1229 |
+
**Example Output:**
|
| 1230 |
+
```markdown
|
| 1231 |
+
## Comparison: GPT-4 vs Llama-3.1-8B
|
| 1232 |
+
|
| 1233 |
+
| Metric | GPT-4 | Llama-3.1-8B | Winner |
|
| 1234 |
+
|--------|-------|--------------|--------|
|
| 1235 |
+
| Success Rate | 95.8% | 93.4% | GPT-4 (+2.4%) |
|
| 1236 |
+
| Avg Duration | 3.2s | 2.1s | Llama (+34% faster) |
|
| 1237 |
+
| Cost per Run | $0.05 | $0.002 | Llama (25x cheaper) |
|
| 1238 |
+
| CO2 Emissions | 0.22g | 0.08g | Llama (64% less) |
|
| 1239 |
+
|
| 1240 |
+
**Analysis:**
|
| 1241 |
+
- GPT-4 has slight accuracy edge but at significant cost premium
|
| 1242 |
+
- Llama-3.1-8B offers excellent cost/performance ratio
|
| 1243 |
+
- For 1000 runs: GPT-4 costs $50, Llama costs $2
|
| 1244 |
+
|
| 1245 |
+
**Recommendation:**
|
| 1246 |
+
Use Llama-3.1-8B for production unless 95%+ accuracy is critical.
|
| 1247 |
+
Consider hybrid approach: Llama for routine tasks, GPT-4 for complex ones.
|
| 1248 |
+
```
|
| 1249 |
+
|
| 1250 |
+
---
|
| 1251 |
+
|
| 1252 |
+
### 5. `analyze_results`
|
| 1253 |
+
|
| 1254 |
+
**Purpose**: Deep dive into test case results
|
| 1255 |
+
|
| 1256 |
+
**Input Schema:**
|
| 1257 |
+
```json
|
| 1258 |
+
{
|
| 1259 |
+
"results_repo": "string", // HF results dataset
|
| 1260 |
+
"run_id": "string", // Run to analyze
|
| 1261 |
+
"focus": "string" // "failures" | "successes" | "all"
|
| 1262 |
+
}
|
| 1263 |
+
```
|
| 1264 |
+
|
| 1265 |
+
**What It Does:**
|
| 1266 |
+
1. Loads results dataset
|
| 1267 |
+
2. Filters by success/failure
|
| 1268 |
+
3. Identifies patterns
|
| 1269 |
+
4. Suggests optimizations
|
| 1270 |
+
|
| 1271 |
+
---
|
| 1272 |
+
|
| 1273 |
+
## π Accessing the MCP Server
|
| 1274 |
+
|
| 1275 |
+
### Via TraceMind-AI (This App!)
|
| 1276 |
+
|
| 1277 |
+
The **Agent Chat** screen uses TraceMind-MCP-Server automatically:
|
| 1278 |
+
|
| 1279 |
+
```python
|
| 1280 |
+
# Happens automatically in the Chat screen
|
| 1281 |
+
from mcp_client.sync_wrapper import get_sync_mcp_client
|
| 1282 |
+
|
| 1283 |
+
mcp = get_sync_mcp_client()
|
| 1284 |
+
insights = mcp.analyze_leaderboard(
|
| 1285 |
+
metric_focus="overall",
|
| 1286 |
+
time_range="last_week"
|
| 1287 |
+
)
|
| 1288 |
+
```
|
| 1289 |
+
|
| 1290 |
+
### Via SSE Endpoint (for smolagents)
|
| 1291 |
+
|
| 1292 |
+
```python
|
| 1293 |
+
from smolagents import MCPClient, ToolCallingAgent
|
| 1294 |
+
|
| 1295 |
+
# Connect to MCP server via SSE
|
| 1296 |
+
mcp_client = MCPClient(
|
| 1297 |
+
"https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse"
|
| 1298 |
+
)
|
| 1299 |
+
|
| 1300 |
+
# Create agent with MCP tools
|
| 1301 |
+
agent = ToolCallingAgent(
|
| 1302 |
+
tools=[],
|
| 1303 |
+
model="hfapi",
|
| 1304 |
+
additional_authorized_imports=["requests", "pandas"]
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
# Tools automatically available!
|
| 1308 |
+
agent.run("Analyze the leaderboard and show top 3 models")
|
| 1309 |
+
```
|
| 1310 |
+
|
| 1311 |
+
### Via MCP SDK (for other clients)
|
| 1312 |
+
|
| 1313 |
+
```python
|
| 1314 |
+
from mcp import ClientSession, StdioServerParameters
|
| 1315 |
+
|
| 1316 |
+
# For local development
|
| 1317 |
+
session = ClientSession(
|
| 1318 |
+
StdioServerParameters(
|
| 1319 |
+
command="python",
|
| 1320 |
+
args=["-m", "mcp_tools"]
|
| 1321 |
+
)
|
| 1322 |
+
)
|
| 1323 |
+
|
| 1324 |
+
# Call tools
|
| 1325 |
+
result = await session.call_tool(
|
| 1326 |
+
"analyze_leaderboard",
|
| 1327 |
+
arguments={"metric_focus": "cost"}
|
| 1328 |
+
)
|
| 1329 |
+
```
|
| 1330 |
+
|
| 1331 |
+
---
|
| 1332 |
+
|
| 1333 |
+
## π― Use Cases
|
| 1334 |
+
|
| 1335 |
+
### 1. Interactive Analysis (Agent Chat)
|
| 1336 |
+
Ask natural language questions:
|
| 1337 |
+
- "What are the top 3 models by accuracy?"
|
| 1338 |
+
- "Compare GPT-4 and Claude-3 on cost"
|
| 1339 |
+
- "Why is this agent slow?"
|
| 1340 |
+
|
| 1341 |
+
### 2. Automated Insights (Leaderboard)
|
| 1342 |
+
Get AI summaries automatically:
|
| 1343 |
+
- Weekly trend reports
|
| 1344 |
+
- Cost optimization recommendations
|
| 1345 |
+
- Performance alerts
|
| 1346 |
+
|
| 1347 |
+
### 3. Debugging (Trace Detail)
|
| 1348 |
+
Understand agent behavior:
|
| 1349 |
+
- "Why did the agent fail?"
|
| 1350 |
+
- "Which tool took the longest?"
|
| 1351 |
+
- "Why was the same tool called twice?"
|
| 1352 |
+
|
| 1353 |
+
### 4. Planning (Cost Estimator)
|
| 1354 |
+
Before running evaluations:
|
| 1355 |
+
- "How much will 1000 tests cost?"
|
| 1356 |
+
- "Should I use A10 or H200?"
|
| 1357 |
+
- "What's the CO2 impact?"
|
| 1358 |
+
|
| 1359 |
+
---
|
| 1360 |
+
|
| 1361 |
+
## ποΈ Architecture
|
| 1362 |
+
|
| 1363 |
+
```
|
| 1364 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1365 |
+
β TraceMind-MCP-Server (HF Space) β
|
| 1366 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
|
| 1367 |
+
β β
|
| 1368 |
+
β βββββββββββββββββββ ββββββββββββββββββββ β
|
| 1369 |
+
β β Gradio App β β MCP Protocol β β
|
| 1370 |
+
β β (UI + SSE) βββββββββΊβ Handler β β
|
| 1371 |
+
β βββββββββββββββββββ ββββββββββ¬ββββββββββ β
|
| 1372 |
+
β β β
|
| 1373 |
+
β ββββββββββΌββββββββββ β
|
| 1374 |
+
β β Tool Router β β
|
| 1375 |
+
β ββββββββββ¬ββββββββββ β
|
| 1376 |
+
β β β
|
| 1377 |
+
β βββββββββββββββββββββββββββββββΌβββββββββββ β
|
| 1378 |
+
β β β β β
|
| 1379 |
+
β ββββββββΌβββββββ βββββββββββΌββββββββΌβββ ββββΌβββΌβββ
|
| 1380 |
+
β β Leaderboard β β Cost Estimator β β Trace β
|
| 1381 |
+
β β Analyzer β β β βDebuggerβ
|
| 1382 |
+
β βββββββββββββββ βββββββββββββββββββββ ββββββββββ
|
| 1383 |
+
β β β β β
|
| 1384 |
+
β βββββββββββββββββββββββ΄βββββββββββββββββββ β
|
| 1385 |
+
β β β
|
| 1386 |
+
β βββββββββββΌβββββββββββ β
|
| 1387 |
+
β β Gemini 2.5 Pro β β
|
| 1388 |
+
β β (Analysis Engine) β β
|
| 1389 |
+
β ββββββββββββββββββββββ β
|
| 1390 |
+
β β
|
| 1391 |
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1392 |
+
β
|
| 1393 |
+
β MCP Protocol (SSE)
|
| 1394 |
+
β
|
| 1395 |
+
βΌ
|
| 1396 |
+
ββββββββββββββββββββββββββββ
|
| 1397 |
+
β TraceMind-AI (UI) β
|
| 1398 |
+
β Agent Chat Screen β
|
| 1399 |
+
ββββββββββββββββββββββββββββ
|
| 1400 |
+
```
|
| 1401 |
+
|
| 1402 |
+
---
|
| 1403 |
+
|
| 1404 |
+
## π§ Configuration
|
| 1405 |
+
|
| 1406 |
+
### Environment Variables
|
| 1407 |
+
|
| 1408 |
+
```env
|
| 1409 |
+
# Google Gemini API (required)
|
| 1410 |
+
GEMINI_API_KEY=your_api_key_here
|
| 1411 |
+
|
| 1412 |
+
# HuggingFace Token (for dataset access)
|
| 1413 |
+
HF_TOKEN=your_token_here
|
| 1414 |
+
|
| 1415 |
+
# Default Leaderboard (optional)
|
| 1416 |
+
DEFAULT_LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
|
| 1417 |
+
```
|
| 1418 |
+
|
| 1419 |
+
---
|
| 1420 |
+
|
| 1421 |
+
## π Dataset Requirements
|
| 1422 |
+
|
| 1423 |
+
MCP tools expect datasets with specific schemas:
|
| 1424 |
+
|
| 1425 |
+
### Leaderboard Dataset
|
| 1426 |
+
```python
|
| 1427 |
+
{
|
| 1428 |
+
"run_id": "string",
|
| 1429 |
+
"model": "string",
|
| 1430 |
+
"success_rate": "float",
|
| 1431 |
+
"total_cost_usd": "float",
|
| 1432 |
+
"timestamp": "string",
|
| 1433 |
+
# ... other metrics
|
| 1434 |
+
}
|
| 1435 |
+
```
|
| 1436 |
+
|
| 1437 |
+
### Results Dataset
|
| 1438 |
+
```python
|
| 1439 |
+
{
|
| 1440 |
+
"run_id": "string",
|
| 1441 |
+
"task_id": "string",
|
| 1442 |
+
"success": "boolean",
|
| 1443 |
+
"trace_id": "string",
|
| 1444 |
+
# ... other fields
|
| 1445 |
+
}
|
| 1446 |
+
```
|
| 1447 |
+
|
| 1448 |
+
### Traces Dataset
|
| 1449 |
+
```python
|
| 1450 |
+
{
|
| 1451 |
+
"trace_id": "string",
|
| 1452 |
+
"spans": [
|
| 1453 |
+
{
|
| 1454 |
+
"spanId": "string",
|
| 1455 |
+
"name": "string",
|
| 1456 |
+
"attributes": {},
|
| 1457 |
+
# ... OTEL format
|
| 1458 |
+
}
|
| 1459 |
+
]
|
| 1460 |
+
}
|
| 1461 |
+
```
|
| 1462 |
+
|
| 1463 |
+
---
|
| 1464 |
+
|
| 1465 |
+
## π Learning Resources
|
| 1466 |
+
|
| 1467 |
+
### MCP Documentation
|
| 1468 |
+
- [Model Context Protocol Spec](https://modelcontextprotocol.io)
|
| 1469 |
+
- [MCP Python SDK](https://github.com/modelcontextprotocol/python-sdk)
|
| 1470 |
+
- [Gradio MCP Integration](https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks#model-context-protocol-mcp)
|
| 1471 |
+
|
| 1472 |
+
### Implementation Examples
|
| 1473 |
+
- **This Server**: [HF Space Code](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server/tree/main)
|
| 1474 |
+
- **Client Integration**: [TraceMind-AI mcp_client/](https://github.com/Mandark-droid/TraceMind-AI/tree/main/mcp_client)
|
| 1475 |
+
|
| 1476 |
+
---
|
| 1477 |
+
|
| 1478 |
+
## π Troubleshooting
|
| 1479 |
+
|
| 1480 |
+
### Common Issues
|
| 1481 |
+
|
| 1482 |
+
**Q: MCP tools not appearing?**
|
| 1483 |
+
```bash
|
| 1484 |
+
# Verify MCP_SERVER_URL is correct
|
| 1485 |
+
echo $MCP_SERVER_URL
|
| 1486 |
+
|
| 1487 |
+
# Should be: https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
|
| 1488 |
+
```
|
| 1489 |
+
|
| 1490 |
+
**Q: "Failed to load dataset" error?**
|
| 1491 |
+
```bash
|
| 1492 |
+
# Check HF token
|
| 1493 |
+
export HF_TOKEN=your_token_here
|
| 1494 |
+
|
| 1495 |
+
# Verify dataset exists
|
| 1496 |
+
huggingface-cli repo info kshitijthakkar/smoltrace-leaderboard
|
| 1497 |
+
```
|
| 1498 |
+
|
| 1499 |
+
**Q: Gemini API errors?**
|
| 1500 |
+
```bash
|
| 1501 |
+
# Verify API key
|
| 1502 |
+
curl -H "Authorization: Bearer $GEMINI_API_KEY" \\
|
| 1503 |
+
https://generativelanguage.googleapis.com/v1beta/models
|
| 1504 |
+
|
| 1505 |
+
# Check rate limits (10 requests/minute on free tier)
|
| 1506 |
+
```
|
| 1507 |
+
|
| 1508 |
+
---
|
| 1509 |
+
|
| 1510 |
+
## π Links
|
| 1511 |
+
|
| 1512 |
+
- **Live Server**: [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
|
| 1513 |
+
- **Source Code**: [GitHub](https://github.com/Mandark-droid/TraceMind-mcp-server)
|
| 1514 |
+
- **Client (This App)**: [TraceMind-AI](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind)
|
| 1515 |
+
- **MCP Spec**: [modelcontextprotocol.io](https://modelcontextprotocol.io)
|
| 1516 |
+
|
| 1517 |
+
---
|
| 1518 |
+
|
| 1519 |
+
## π License
|
| 1520 |
+
|
| 1521 |
+
**AGPL-3.0** - Open source and free to use
|
| 1522 |
+
|
| 1523 |
+
---
|
| 1524 |
+
|
| 1525 |
+
## π€ Contributing
|
| 1526 |
+
|
| 1527 |
+
Help improve TraceMind-MCP-Server:
|
| 1528 |
+
- Add new MCP tools
|
| 1529 |
+
- Improve analysis quality
|
| 1530 |
+
- Optimize performance
|
| 1531 |
+
- Add support for more datasets
|
| 1532 |
+
|
| 1533 |
+
---
|
| 1534 |
+
|
| 1535 |
+
## π MCP's 1st Birthday Hackathon
|
| 1536 |
+
|
| 1537 |
+
**Track 1 Submission: Building MCP (Enterprise)**
|
| 1538 |
+
|
| 1539 |
+
TraceMind-MCP-Server demonstrates:
|
| 1540 |
+
- β
Standards-compliant MCP implementation
|
| 1541 |
+
- β
SSE transport for Gradio integration
|
| 1542 |
+
- β
Real-world use case (agent evaluation)
|
| 1543 |
+
- β
Gemini 2.5 Pro integration
|
| 1544 |
+
- β
Production-ready deployment on HF Spaces
|
| 1545 |
+
|
| 1546 |
+
**Used by**: TraceMind-AI (Track 2) for autonomous agent chat
|
| 1547 |
+
|
| 1548 |
+
---
|
| 1549 |
+
|
| 1550 |
+
*TraceMind-MCP-Server - Intelligent analysis, one tool at a time* π
|
| 1551 |
+
""")
|
| 1552 |
+
|
| 1553 |
+
|
| 1554 |
+
def create_documentation_screen():
|
| 1555 |
+
"""
|
| 1556 |
+
Create the complete documentation screen with tabs
|
| 1557 |
+
|
| 1558 |
+
Returns:
|
| 1559 |
+
gr.Blocks: Gradio Blocks interface for documentation
|
| 1560 |
+
"""
|
| 1561 |
+
with gr.Blocks() as documentation_interface:
|
| 1562 |
+
gr.Markdown("""
|
| 1563 |
+
# π TraceMind Documentation
|
| 1564 |
+
|
| 1565 |
+
Comprehensive documentation for the entire TraceMind ecosystem
|
| 1566 |
+
""")
|
| 1567 |
+
|
| 1568 |
+
with gr.Tabs():
|
| 1569 |
+
with gr.Tab("π About"):
|
| 1570 |
+
create_about_tab()
|
| 1571 |
+
|
| 1572 |
+
with gr.Tab("π TraceVerde"):
|
| 1573 |
+
create_traceverde_tab()
|
| 1574 |
+
|
| 1575 |
+
with gr.Tab("π SmolTrace"):
|
| 1576 |
+
create_smoltrace_tab()
|
| 1577 |
+
|
| 1578 |
+
with gr.Tab("π TraceMind-MCP-Server"):
|
| 1579 |
+
create_mcp_server_tab()
|
| 1580 |
+
|
| 1581 |
+
gr.Markdown("""
|
| 1582 |
+
---
|
| 1583 |
+
|
| 1584 |
+
### π‘ Quick Navigation
|
| 1585 |
+
|
| 1586 |
+
- **Getting Started**: Start with the "About" tab for ecosystem overview
|
| 1587 |
+
- **Instrumentation**: See "TraceVerde" for adding observability to your agents
|
| 1588 |
+
- **Evaluation**: Check "SmolTrace" for running evaluations
|
| 1589 |
+
- **MCP Integration**: Explore "TraceMind-MCP-Server" for intelligent analysis
|
| 1590 |
+
|
| 1591 |
+
### π External Resources
|
| 1592 |
+
|
| 1593 |
+
- [GitHub Organization](https://github.com/Mandark-droid)
|
| 1594 |
+
- [HuggingFace Spaces](https://huggingface.co/MCP-1st-Birthday)
|
| 1595 |
+
- [MCP Specification](https://modelcontextprotocol.io)
|
| 1596 |
+
|
| 1597 |
+
*Built with β€οΈ for MCP's 1st Birthday Hackathon*
|
| 1598 |
+
""")
|
| 1599 |
+
|
| 1600 |
+
return documentation_interface
|
| 1601 |
+
|
| 1602 |
+
|
| 1603 |
+
if __name__ == "__main__":
|
| 1604 |
+
# For standalone testing
|
| 1605 |
+
demo = create_documentation_screen()
|
| 1606 |
+
demo.launch()
|