Spaces:
Sleeping
Sleeping
Update main_api.py
Browse files- main_api.py +531 -140
main_api.py
CHANGED
|
@@ -1,21 +1,234 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import fitz # PyMuPDF
|
|
|
|
| 3 |
import faiss
|
| 4 |
-
from
|
| 5 |
from typing import List, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from langchain.text_splitters import RecursiveCharacterTextSplitter, MarkdownTextSplitter
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Initialize embedding model (
|
|
|
|
| 12 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
class DocumentUpload(BaseModel):
|
| 18 |
-
"""Model for document upload response"""
|
| 19 |
file_id: str
|
| 20 |
filename: str
|
| 21 |
file_type: str
|
|
@@ -23,22 +236,80 @@ class DocumentUpload(BaseModel):
|
|
| 23 |
storage_path: str
|
| 24 |
|
| 25 |
class RAGQueryRequest(BaseModel):
|
| 26 |
-
"""Model for RAG query with collection specification"""
|
| 27 |
query: str
|
| 28 |
collection_name: str
|
| 29 |
top_k: Optional[int] = 3
|
| 30 |
|
| 31 |
class VectorStoreInfo(BaseModel):
|
| 32 |
-
"""Information about vector store collection"""
|
| 33 |
collection_name: str
|
| 34 |
total_chunks: int
|
| 35 |
dimension: int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def chunk_document(text: str, file_type: str, chunk_size: int = 1000, chunk_overlap: int = 200):
|
| 40 |
"""Chunk document based on file type"""
|
| 41 |
-
if file_type
|
| 42 |
splitter = MarkdownTextSplitter(
|
| 43 |
chunk_size=chunk_size,
|
| 44 |
chunk_overlap=chunk_overlap
|
|
@@ -54,68 +325,31 @@ def chunk_document(text: str, file_type: str, chunk_size: int = 1000, chunk_over
|
|
| 54 |
logger.info(f"Created {len(chunks)} chunks from document")
|
| 55 |
return chunks
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
"""
|
| 59 |
-
# Generate embeddings
|
| 60 |
-
embeddings = embedding_model.encode(chunks, show_progress_bar=True)
|
| 61 |
-
|
| 62 |
-
if collection_name in vector_stores:
|
| 63 |
-
# Add to existing index
|
| 64 |
-
index_data = vector_stores[collection_name]
|
| 65 |
-
index_data['index'].add(embeddings)
|
| 66 |
-
index_data['chunks'].extend(chunks)
|
| 67 |
-
index_data['metadata'].extend(metadata)
|
| 68 |
-
else:
|
| 69 |
-
# Create new index
|
| 70 |
-
dimension = embeddings.shape[1]
|
| 71 |
-
index = faiss.IndexFlatL2(dimension)
|
| 72 |
-
index.add(embeddings)
|
| 73 |
-
|
| 74 |
-
vector_stores[collection_name] = {
|
| 75 |
-
'index': index,
|
| 76 |
-
'chunks': chunks,
|
| 77 |
-
'metadata': metadata,
|
| 78 |
-
'dimension': dimension
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
logger.info(f"Vector store '{collection_name}' now has {len(vector_stores[collection_name]['chunks'])} chunks")
|
| 82 |
-
return len(chunks)
|
| 83 |
-
|
| 84 |
-
def extract_text_from_pdf(file_bytes: bytes) -> str:
|
| 85 |
-
"""Extract text from PDF using PyMuPDF with markdown formatting"""
|
| 86 |
try:
|
| 87 |
-
|
| 88 |
-
pdf_doc = fitz.open(stream=file_bytes, filetype="pdf")
|
| 89 |
md_text = pymupdf4llm.to_markdown(pdf_doc)
|
| 90 |
return md_text
|
| 91 |
except Exception as e:
|
| 92 |
logger.error(f"Error extracting PDF: {e}")
|
| 93 |
-
|
| 94 |
-
pdf_doc = fitz.open(stream=file_bytes, filetype="pdf")
|
| 95 |
text = ""
|
| 96 |
for page in pdf_doc:
|
| 97 |
text += page.get_text()
|
| 98 |
return text
|
| 99 |
|
| 100 |
-
def extract_text_from_markdown(
|
| 101 |
"""Extract text from markdown file"""
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# New Endpoints
|
| 105 |
|
| 106 |
@app.post("/upload_document", response_model=DocumentUpload)
|
| 107 |
async def upload_document(
|
| 108 |
file: UploadFile = File(...),
|
| 109 |
collection_name: Optional[str] = "default"
|
| 110 |
):
|
| 111 |
-
"""
|
| 112 |
-
Upload and process PDF or Markdown documents for RAG.
|
| 113 |
-
Creates chunks and stores in FAISS vector database.
|
| 114 |
-
"""
|
| 115 |
-
if not supabase:
|
| 116 |
-
raise HTTPException(status_code=500, detail="Supabase not configured")
|
| 117 |
-
|
| 118 |
-
# Validate file type
|
| 119 |
allowed_types = {
|
| 120 |
"application/pdf": "pdf",
|
| 121 |
"text/markdown": "markdown",
|
|
@@ -124,49 +358,47 @@ async def upload_document(
|
|
| 124 |
|
| 125 |
if file.content_type not in allowed_types:
|
| 126 |
raise HTTPException(
|
| 127 |
-
status_code=415,
|
| 128 |
detail=f"Unsupported file type. Allowed: PDF, Markdown, TXT"
|
| 129 |
)
|
| 130 |
|
| 131 |
try:
|
| 132 |
-
#
|
| 133 |
-
file_bytes = await file.read()
|
| 134 |
file_type = allowed_types[file.content_type]
|
|
|
|
| 135 |
|
| 136 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
if file_type == "pdf":
|
| 138 |
-
text_content = extract_text_from_pdf(
|
| 139 |
-
elif file_type in ["markdown", "txt"]:
|
| 140 |
-
text_content = extract_text_from_markdown(file_bytes)
|
| 141 |
else:
|
| 142 |
-
|
| 143 |
|
| 144 |
if not text_content.strip():
|
| 145 |
-
raise HTTPException(status_code=400, detail="No text content extracted
|
| 146 |
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
#
|
| 152 |
-
try:
|
| 153 |
-
supabase.storage.from_("url-2-ans-bucket").upload(
|
| 154 |
-
path=storage_filename,
|
| 155 |
-
file=file_bytes,
|
| 156 |
-
file_options={"content-type": file.content_type}
|
| 157 |
-
)
|
| 158 |
-
except Exception:
|
| 159 |
-
# Try update if file exists
|
| 160 |
-
supabase.storage.from_("url-2-ans-bucket").update(
|
| 161 |
-
path=storage_filename,
|
| 162 |
-
file=file_bytes,
|
| 163 |
-
file_options={"content-type": file.content_type}
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
# Chunk the document
|
| 167 |
chunks = chunk_document(text_content, file_type)
|
| 168 |
|
| 169 |
-
# Create metadata
|
|
|
|
| 170 |
metadata = [
|
| 171 |
{
|
| 172 |
"file_id": file_id,
|
|
@@ -179,31 +411,36 @@ async def upload_document(
|
|
| 179 |
]
|
| 180 |
|
| 181 |
# Add to vector store
|
| 182 |
-
chunks_created =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
return DocumentUpload(
|
| 185 |
file_id=file_id,
|
| 186 |
filename=file.filename,
|
| 187 |
file_type=file_type,
|
| 188 |
chunks_created=chunks_created,
|
| 189 |
-
storage_path=f"supabase://
|
| 190 |
)
|
| 191 |
|
| 192 |
except HTTPException:
|
| 193 |
raise
|
| 194 |
except Exception as e:
|
| 195 |
logger.exception("Error in upload_document")
|
| 196 |
-
raise HTTPException(status_code=500, detail=f"Error
|
| 197 |
-
finally:
|
| 198 |
-
await file.close()
|
| 199 |
-
|
| 200 |
|
| 201 |
@app.post("/upload_multiple_documents")
|
| 202 |
async def upload_multiple_documents(
|
| 203 |
files: List[UploadFile] = File(...),
|
| 204 |
collection_name: Optional[str] = "default"
|
| 205 |
):
|
| 206 |
-
"""Upload multiple documents
|
| 207 |
results = []
|
| 208 |
errors = []
|
| 209 |
|
|
@@ -221,38 +458,30 @@ async def upload_multiple_documents(
|
|
| 221 |
"errors": errors
|
| 222 |
}
|
| 223 |
|
| 224 |
-
|
| 225 |
@app.post("/query_documents")
|
| 226 |
async def query_documents(request: RAGQueryRequest):
|
| 227 |
-
"""
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
if request.collection_name not in vector_stores:
|
| 232 |
raise HTTPException(
|
| 233 |
-
status_code=404,
|
| 234 |
-
detail=f"Collection '{request.collection_name}' not found
|
| 235 |
)
|
| 236 |
|
| 237 |
try:
|
| 238 |
-
# Get vector store data
|
| 239 |
-
store_data = vector_stores[request.collection_name]
|
| 240 |
-
index = store_data['index']
|
| 241 |
-
chunks = store_data['chunks']
|
| 242 |
-
metadata = store_data['metadata']
|
| 243 |
-
|
| 244 |
# Generate query embedding
|
| 245 |
query_embedding = embedding_model.encode([request.query])
|
|
|
|
| 246 |
|
| 247 |
# Search in FAISS
|
| 248 |
-
distances, indices = index.search(
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
retrieved_metadata = [metadata[i] for i in indices[0]]
|
| 253 |
|
| 254 |
-
# Check
|
| 255 |
-
if distances[0][0] > 1.5:
|
| 256 |
return {
|
| 257 |
"answer": "I couldn't find this information in the provided documents.",
|
| 258 |
"sources": [],
|
|
@@ -260,16 +489,20 @@ async def query_documents(request: RAGQueryRequest):
|
|
| 260 |
"collection": request.collection_name
|
| 261 |
}
|
| 262 |
|
| 263 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
context_text = "\n\n".join([
|
| 265 |
-
f"[Source {i+1} - {meta['filename']}]:\n{chunk}"
|
| 266 |
for i, (chunk, meta) in enumerate(zip(retrieved_chunks, retrieved_metadata))
|
| 267 |
])
|
| 268 |
|
| 269 |
-
# Generate answer
|
| 270 |
answer = process_with_groq(request.query, context_text)
|
| 271 |
|
| 272 |
-
# Prepare
|
| 273 |
sources = [
|
| 274 |
{
|
| 275 |
"filename": meta['filename'],
|
|
@@ -292,38 +525,196 @@ async def query_documents(request: RAGQueryRequest):
|
|
| 292 |
logger.exception("Error in query_documents")
|
| 293 |
raise HTTPException(status_code=500, detail=f"Query failed: {str(e)}")
|
| 294 |
|
| 295 |
-
|
| 296 |
@app.get("/list_collections")
|
| 297 |
async def list_collections():
|
| 298 |
-
"""List all
|
| 299 |
-
collections =
|
| 300 |
-
for name, data in vector_stores.items():
|
| 301 |
-
collections.append(VectorStoreInfo(
|
| 302 |
-
collection_name=name,
|
| 303 |
-
total_chunks=len(data['chunks']),
|
| 304 |
-
dimension=data['dimension']
|
| 305 |
-
))
|
| 306 |
return {"collections": collections}
|
| 307 |
|
| 308 |
-
|
| 309 |
@app.delete("/delete_collection/{collection_name}")
|
| 310 |
async def delete_collection(collection_name: str):
|
| 311 |
-
"""Delete a
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
@app.get("/health_check")
|
| 320 |
async def health_check():
|
| 321 |
-
"""
|
| 322 |
return {
|
| 323 |
"status": "healthy",
|
| 324 |
"supabase_configured": supabase is not None,
|
| 325 |
-
"groq_configured":
|
| 326 |
"embedding_model": "all-MiniLM-L6-v2",
|
| 327 |
-
"vector_stores": len(
|
| 328 |
-
"total_chunks": sum(len(store['chunks']) for store in
|
|
|
|
|
|
|
| 329 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import time
|
| 4 |
+
import random
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
import uvicorn
|
| 8 |
import fitz # PyMuPDF
|
| 9 |
+
import pymupdf4llm
|
| 10 |
import faiss
|
| 11 |
+
from pathlib import Path
|
| 12 |
from typing import List, Optional
|
| 13 |
+
from urllib.parse import urlparse, urljoin
|
| 14 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile
|
| 15 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
from bs4 import BeautifulSoup
|
| 18 |
+
import requests
|
| 19 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 20 |
+
from supabase import create_client, Client
|
| 21 |
+
from groq import Groq
|
| 22 |
+
from sentence_transformers import SentenceTransformer
|
| 23 |
from langchain.text_splitters import RecursiveCharacterTextSplitter, MarkdownTextSplitter
|
| 24 |
+
import pickle
|
| 25 |
+
|
| 26 |
+
# ==================== CONFIGURATION FOR HUGGING FACE SPACES ====================
|
| 27 |
+
|
| 28 |
+
# Persistent storage directory (Hugging Face Spaces uses /data/)
|
| 29 |
+
PERSISTENT_STORAGE = os.getenv("PERSISTENT_STORAGE", "/data")
|
| 30 |
+
VECTOR_STORE_DIR = os.path.join(PERSISTENT_STORAGE, "vector_stores")
|
| 31 |
+
TEMP_UPLOAD_DIR = os.path.join(PERSISTENT_STORAGE, "temp_uploads")
|
| 32 |
+
|
| 33 |
+
# Create directories if they don't exist
|
| 34 |
+
os.makedirs(VECTOR_STORE_DIR, exist_ok=True)
|
| 35 |
+
os.makedirs(TEMP_UPLOAD_DIR, exist_ok=True)
|
| 36 |
+
|
| 37 |
+
# Set HuggingFace cache to persistent storage
|
| 38 |
+
os.environ["HF_HOME"] = os.path.join(PERSISTENT_STORAGE, ".huggingface")
|
| 39 |
+
|
| 40 |
+
# ==================== LOGGING SETUP ====================
|
| 41 |
+
|
| 42 |
+
logging.basicConfig(
|
| 43 |
+
level=logging.INFO,
|
| 44 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 45 |
+
)
|
| 46 |
+
logger = logging.getLogger(__name__)
|
| 47 |
+
|
| 48 |
+
# ==================== FASTAPI APP ====================
|
| 49 |
+
|
| 50 |
+
app = FastAPI(title="RAG Assistant API", version="2.0")
|
| 51 |
+
|
| 52 |
+
# CORS middleware
|
| 53 |
+
app.add_middleware(
|
| 54 |
+
CORSMiddleware,
|
| 55 |
+
allow_origins=["*"],
|
| 56 |
+
allow_credentials=True,
|
| 57 |
+
allow_methods=["*"],
|
| 58 |
+
allow_headers=["*"],
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# ==================== ENVIRONMENT VARIABLES ====================
|
| 62 |
+
|
| 63 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 64 |
+
supabase_url = os.getenv("SUPABASE_URL")
|
| 65 |
+
supabase_key = os.getenv("SUPABASE_KEY")
|
| 66 |
+
|
| 67 |
+
# Initialize clients
|
| 68 |
+
supabase: Optional[Client] = None
|
| 69 |
+
groq_client = None
|
| 70 |
+
|
| 71 |
+
if supabase_url and supabase_key:
|
| 72 |
+
try:
|
| 73 |
+
supabase = create_client(supabase_url, supabase_key)
|
| 74 |
+
logger.info("Supabase client initialized successfully")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
logger.error(f"Failed to initialize Supabase: {e}")
|
| 77 |
+
|
| 78 |
+
if groq_api_key:
|
| 79 |
+
try:
|
| 80 |
+
groq_client = Groq(api_key=groq_api_key)
|
| 81 |
+
logger.info("Groq client initialized successfully")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Failed to initialize Groq: {e}")
|
| 84 |
|
| 85 |
+
# Initialize embedding model (cached in persistent storage)
|
| 86 |
+
logger.info("Loading embedding model...")
|
| 87 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 88 |
+
logger.info("Embedding model loaded successfully")
|
| 89 |
|
| 90 |
+
# ==================== PERSISTENT VECTOR STORE MANAGEMENT ====================
|
| 91 |
+
|
| 92 |
+
class VectorStoreManager:
|
| 93 |
+
"""Manage FAISS vector stores with disk persistence"""
|
| 94 |
+
|
| 95 |
+
def __init__(self, base_dir: str):
|
| 96 |
+
self.base_dir = base_dir
|
| 97 |
+
self.stores = {}
|
| 98 |
+
self.load_all_stores()
|
| 99 |
+
|
| 100 |
+
def load_all_stores(self):
|
| 101 |
+
"""Load all existing vector stores from disk on startup"""
|
| 102 |
+
try:
|
| 103 |
+
for collection_dir in Path(self.base_dir).iterdir():
|
| 104 |
+
if collection_dir.is_dir():
|
| 105 |
+
collection_name = collection_dir.name
|
| 106 |
+
try:
|
| 107 |
+
self.load_store(collection_name)
|
| 108 |
+
logger.info(f"Loaded collection '{collection_name}' from disk")
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logger.error(f"Failed to load collection '{collection_name}': {e}")
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Error loading vector stores: {e}")
|
| 113 |
+
|
| 114 |
+
def load_store(self, collection_name: str):
|
| 115 |
+
"""Load a specific vector store from disk"""
|
| 116 |
+
collection_dir = os.path.join(self.base_dir, collection_name)
|
| 117 |
+
|
| 118 |
+
if not os.path.exists(collection_dir):
|
| 119 |
+
raise FileNotFoundError(f"Collection '{collection_name}' not found")
|
| 120 |
+
|
| 121 |
+
# Load FAISS index
|
| 122 |
+
index_path = os.path.join(collection_dir, "index.faiss")
|
| 123 |
+
index = faiss.read_index(index_path)
|
| 124 |
+
|
| 125 |
+
# Load metadata
|
| 126 |
+
metadata_path = os.path.join(collection_dir, "metadata.pkl")
|
| 127 |
+
with open(metadata_path, 'rb') as f:
|
| 128 |
+
data = pickle.load(f)
|
| 129 |
+
|
| 130 |
+
self.stores[collection_name] = {
|
| 131 |
+
'index': index,
|
| 132 |
+
'chunks': data['chunks'],
|
| 133 |
+
'metadata': data['metadata'],
|
| 134 |
+
'dimension': index.d
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
def save_store(self, collection_name: str):
|
| 138 |
+
"""Save a vector store to disk"""
|
| 139 |
+
collection_dir = os.path.join(self.base_dir, collection_name)
|
| 140 |
+
os.makedirs(collection_dir, exist_ok=True)
|
| 141 |
+
|
| 142 |
+
store_data = self.stores[collection_name]
|
| 143 |
+
|
| 144 |
+
# Save FAISS index
|
| 145 |
+
index_path = os.path.join(collection_dir, "index.faiss")
|
| 146 |
+
faiss.write_index(store_data['index'], index_path)
|
| 147 |
+
|
| 148 |
+
# Save metadata
|
| 149 |
+
metadata_path = os.path.join(collection_dir, "metadata.pkl")
|
| 150 |
+
with open(metadata_path, 'wb') as f:
|
| 151 |
+
pickle.dump({
|
| 152 |
+
'chunks': store_data['chunks'],
|
| 153 |
+
'metadata': store_data['metadata']
|
| 154 |
+
}, f)
|
| 155 |
+
|
| 156 |
+
logger.info(f"Saved collection '{collection_name}' to disk")
|
| 157 |
+
|
| 158 |
+
def create_or_update_store(self, collection_name: str, chunks: List[str], metadata: List[dict]):
|
| 159 |
+
"""Create or update a vector store"""
|
| 160 |
+
# Generate embeddings
|
| 161 |
+
embeddings = embedding_model.encode(chunks, show_progress_bar=True)
|
| 162 |
+
embeddings = np.array(embeddings).astype('float32')
|
| 163 |
+
|
| 164 |
+
if collection_name in self.stores:
|
| 165 |
+
# Add to existing index
|
| 166 |
+
store_data = self.stores[collection_name]
|
| 167 |
+
store_data['index'].add(embeddings)
|
| 168 |
+
store_data['chunks'].extend(chunks)
|
| 169 |
+
store_data['metadata'].extend(metadata)
|
| 170 |
+
else:
|
| 171 |
+
# Create new index
|
| 172 |
+
dimension = embeddings.shape[1]
|
| 173 |
+
index = faiss.IndexFlatL2(dimension)
|
| 174 |
+
index.add(embeddings)
|
| 175 |
+
|
| 176 |
+
self.stores[collection_name] = {
|
| 177 |
+
'index': index,
|
| 178 |
+
'chunks': chunks.copy(),
|
| 179 |
+
'metadata': metadata.copy(),
|
| 180 |
+
'dimension': dimension
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
# Save to disk
|
| 184 |
+
self.save_store(collection_name)
|
| 185 |
+
return len(chunks)
|
| 186 |
+
|
| 187 |
+
def get_store(self, collection_name: str):
|
| 188 |
+
"""Get a vector store"""
|
| 189 |
+
if collection_name not in self.stores:
|
| 190 |
+
# Try to load from disk
|
| 191 |
+
try:
|
| 192 |
+
self.load_store(collection_name)
|
| 193 |
+
except:
|
| 194 |
+
return None
|
| 195 |
+
return self.stores.get(collection_name)
|
| 196 |
+
|
| 197 |
+
def delete_store(self, collection_name: str):
|
| 198 |
+
"""Delete a vector store"""
|
| 199 |
+
if collection_name in self.stores:
|
| 200 |
+
del self.stores[collection_name]
|
| 201 |
+
|
| 202 |
+
# Delete from disk
|
| 203 |
+
collection_dir = os.path.join(self.base_dir, collection_name)
|
| 204 |
+
if os.path.exists(collection_dir):
|
| 205 |
+
import shutil
|
| 206 |
+
shutil.rmtree(collection_dir)
|
| 207 |
+
|
| 208 |
+
def list_stores(self):
|
| 209 |
+
"""List all available stores"""
|
| 210 |
+
return [
|
| 211 |
+
{
|
| 212 |
+
'collection_name': name,
|
| 213 |
+
'total_chunks': len(data['chunks']),
|
| 214 |
+
'dimension': data['dimension']
|
| 215 |
+
}
|
| 216 |
+
for name, data in self.stores.items()
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
# Initialize vector store manager
|
| 220 |
+
vector_store_manager = VectorStoreManager(VECTOR_STORE_DIR)
|
| 221 |
+
|
| 222 |
+
# ==================== PYDANTIC MODELS ====================
|
| 223 |
+
|
| 224 |
+
class URL(BaseModel):
|
| 225 |
+
url: str
|
| 226 |
+
|
| 227 |
+
class RAGRequest(BaseModel):
|
| 228 |
+
file_path: str
|
| 229 |
+
prompt: str
|
| 230 |
|
| 231 |
class DocumentUpload(BaseModel):
|
|
|
|
| 232 |
file_id: str
|
| 233 |
filename: str
|
| 234 |
file_type: str
|
|
|
|
| 236 |
storage_path: str
|
| 237 |
|
| 238 |
class RAGQueryRequest(BaseModel):
|
|
|
|
| 239 |
query: str
|
| 240 |
collection_name: str
|
| 241 |
top_k: Optional[int] = 3
|
| 242 |
|
| 243 |
class VectorStoreInfo(BaseModel):
|
|
|
|
| 244 |
collection_name: str
|
| 245 |
total_chunks: int
|
| 246 |
dimension: int
|
| 247 |
+
|
| 248 |
+
# ==================== EXISTING FUNCTIONALITY ====================
|
| 249 |
+
|
| 250 |
+
user_agents = [
|
| 251 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
|
| 252 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
|
| 253 |
+
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
|
| 254 |
+
]
|
| 255 |
+
|
| 256 |
+
bucket_name = "url-2-ans-bucket"
|
| 257 |
+
|
| 258 |
+
def query(payload):
|
| 259 |
+
"""Query Hugging Face embedding API"""
|
| 260 |
+
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
|
| 261 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN', '')}"}
|
| 262 |
|
| 263 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 264 |
+
if response.status_code == 200:
|
| 265 |
+
return response.json()
|
| 266 |
+
else:
|
| 267 |
+
logger.warning(f"HF API error: {response.status_code}, using local model")
|
| 268 |
+
return embedding_model.encode(payload["inputs"]).tolist()
|
| 269 |
+
|
| 270 |
+
def process_with_groq(query: str, context: str) -> str:
|
| 271 |
+
"""Process query with Groq LLM"""
|
| 272 |
+
if not groq_client:
|
| 273 |
+
return "Groq API not configured. Please set GROQ_API_KEY environment variable."
|
| 274 |
+
|
| 275 |
+
try:
|
| 276 |
+
messages = [
|
| 277 |
+
{
|
| 278 |
+
"role": "system",
|
| 279 |
+
"content": "You are a helpful assistant. Answer questions based on the provided context. If you cannot find the answer in the context, say so."
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"role": "user",
|
| 283 |
+
"content": f"Context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
| 284 |
+
}
|
| 285 |
+
]
|
| 286 |
+
|
| 287 |
+
chat_completion = groq_client.chat.completions.create(
|
| 288 |
+
messages=messages,
|
| 289 |
+
model="llama-3.3-70b-versatile",
|
| 290 |
+
temperature=0.7,
|
| 291 |
+
max_tokens=1024,
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
return chat_completion.choices[0].message.content
|
| 295 |
+
except Exception as e:
|
| 296 |
+
logger.error(f"Groq API error: {e}")
|
| 297 |
+
return f"Error generating response: {str(e)}"
|
| 298 |
+
|
| 299 |
+
@app.get("/")
|
| 300 |
+
async def root():
|
| 301 |
+
return {
|
| 302 |
+
"message": "RAG Assistant API",
|
| 303 |
+
"version": "2.0",
|
| 304 |
+
"status": "running",
|
| 305 |
+
"storage": PERSISTENT_STORAGE
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
# ==================== NEW RAG ENDPOINTS ====================
|
| 309 |
|
| 310 |
def chunk_document(text: str, file_type: str, chunk_size: int = 1000, chunk_overlap: int = 200):
|
| 311 |
"""Chunk document based on file type"""
|
| 312 |
+
if file_type in ["markdown", "md"]:
|
| 313 |
splitter = MarkdownTextSplitter(
|
| 314 |
chunk_size=chunk_size,
|
| 315 |
chunk_overlap=chunk_overlap
|
|
|
|
| 325 |
logger.info(f"Created {len(chunks)} chunks from document")
|
| 326 |
return chunks
|
| 327 |
|
| 328 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
| 329 |
+
"""Extract text from PDF"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
try:
|
| 331 |
+
pdf_doc = fitz.open(file_path)
|
|
|
|
| 332 |
md_text = pymupdf4llm.to_markdown(pdf_doc)
|
| 333 |
return md_text
|
| 334 |
except Exception as e:
|
| 335 |
logger.error(f"Error extracting PDF: {e}")
|
| 336 |
+
pdf_doc = fitz.open(file_path)
|
|
|
|
| 337 |
text = ""
|
| 338 |
for page in pdf_doc:
|
| 339 |
text += page.get_text()
|
| 340 |
return text
|
| 341 |
|
| 342 |
+
def extract_text_from_markdown(file_path: str) -> str:
|
| 343 |
"""Extract text from markdown file"""
|
| 344 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 345 |
+
return f.read()
|
|
|
|
| 346 |
|
| 347 |
@app.post("/upload_document", response_model=DocumentUpload)
|
| 348 |
async def upload_document(
|
| 349 |
file: UploadFile = File(...),
|
| 350 |
collection_name: Optional[str] = "default"
|
| 351 |
):
|
| 352 |
+
"""Upload and process PDF or Markdown documents"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
allowed_types = {
|
| 354 |
"application/pdf": "pdf",
|
| 355 |
"text/markdown": "markdown",
|
|
|
|
| 358 |
|
| 359 |
if file.content_type not in allowed_types:
|
| 360 |
raise HTTPException(
|
| 361 |
+
status_code=415,
|
| 362 |
detail=f"Unsupported file type. Allowed: PDF, Markdown, TXT"
|
| 363 |
)
|
| 364 |
|
| 365 |
try:
|
| 366 |
+
# Save file temporarily to persistent storage
|
|
|
|
| 367 |
file_type = allowed_types[file.content_type]
|
| 368 |
+
temp_file_path = os.path.join(TEMP_UPLOAD_DIR, f"{int(time.time())}_{file.filename}")
|
| 369 |
|
| 370 |
+
# Write uploaded file
|
| 371 |
+
with open(temp_file_path, "wb") as buffer:
|
| 372 |
+
content = await file.read()
|
| 373 |
+
buffer.write(content)
|
| 374 |
+
|
| 375 |
+
# Extract text
|
| 376 |
if file_type == "pdf":
|
| 377 |
+
text_content = extract_text_from_pdf(temp_file_path)
|
|
|
|
|
|
|
| 378 |
else:
|
| 379 |
+
text_content = extract_text_from_markdown(temp_file_path)
|
| 380 |
|
| 381 |
if not text_content.strip():
|
| 382 |
+
raise HTTPException(status_code=400, detail="No text content extracted")
|
| 383 |
|
| 384 |
+
# Optional: Upload to Supabase
|
| 385 |
+
storage_filename = f"{int(time.time())}_{file.filename}"
|
| 386 |
+
if supabase:
|
| 387 |
+
try:
|
| 388 |
+
with open(temp_file_path, 'rb') as f:
|
| 389 |
+
supabase.storage.from_(bucket_name).upload(
|
| 390 |
+
path=storage_filename,
|
| 391 |
+
file=f.read(),
|
| 392 |
+
file_options={"content-type": file.content_type}
|
| 393 |
+
)
|
| 394 |
+
except:
|
| 395 |
+
pass # Continue even if Supabase upload fails
|
| 396 |
|
| 397 |
+
# Chunk document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
chunks = chunk_document(text_content, file_type)
|
| 399 |
|
| 400 |
+
# Create metadata
|
| 401 |
+
file_id = str(int(time.time()))
|
| 402 |
metadata = [
|
| 403 |
{
|
| 404 |
"file_id": file_id,
|
|
|
|
| 411 |
]
|
| 412 |
|
| 413 |
# Add to vector store
|
| 414 |
+
chunks_created = vector_store_manager.create_or_update_store(
|
| 415 |
+
collection_name, chunks, metadata
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Clean up temp file
|
| 419 |
+
try:
|
| 420 |
+
os.remove(temp_file_path)
|
| 421 |
+
except:
|
| 422 |
+
pass
|
| 423 |
|
| 424 |
return DocumentUpload(
|
| 425 |
file_id=file_id,
|
| 426 |
filename=file.filename,
|
| 427 |
file_type=file_type,
|
| 428 |
chunks_created=chunks_created,
|
| 429 |
+
storage_path=f"supabase://{bucket_name}/{storage_filename}" if supabase else temp_file_path
|
| 430 |
)
|
| 431 |
|
| 432 |
except HTTPException:
|
| 433 |
raise
|
| 434 |
except Exception as e:
|
| 435 |
logger.exception("Error in upload_document")
|
| 436 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
@app.post("/upload_multiple_documents")
|
| 439 |
async def upload_multiple_documents(
|
| 440 |
files: List[UploadFile] = File(...),
|
| 441 |
collection_name: Optional[str] = "default"
|
| 442 |
):
|
| 443 |
+
"""Upload multiple documents"""
|
| 444 |
results = []
|
| 445 |
errors = []
|
| 446 |
|
|
|
|
| 458 |
"errors": errors
|
| 459 |
}
|
| 460 |
|
|
|
|
| 461 |
@app.post("/query_documents")
|
| 462 |
async def query_documents(request: RAGQueryRequest):
|
| 463 |
+
"""Query documents using RAG"""
|
| 464 |
+
store_data = vector_store_manager.get_store(request.collection_name)
|
| 465 |
+
|
| 466 |
+
if not store_data:
|
|
|
|
| 467 |
raise HTTPException(
|
| 468 |
+
status_code=404,
|
| 469 |
+
detail=f"Collection '{request.collection_name}' not found"
|
| 470 |
)
|
| 471 |
|
| 472 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
# Generate query embedding
|
| 474 |
query_embedding = embedding_model.encode([request.query])
|
| 475 |
+
query_embedding = np.array(query_embedding).astype('float32')
|
| 476 |
|
| 477 |
# Search in FAISS
|
| 478 |
+
distances, indices = store_data['index'].search(
|
| 479 |
+
query_embedding,
|
| 480 |
+
min(request.top_k, len(store_data['chunks']))
|
| 481 |
+
)
|
|
|
|
| 482 |
|
| 483 |
+
# Check relevance threshold
|
| 484 |
+
if distances[0][0] > 1.5:
|
| 485 |
return {
|
| 486 |
"answer": "I couldn't find this information in the provided documents.",
|
| 487 |
"sources": [],
|
|
|
|
| 489 |
"collection": request.collection_name
|
| 490 |
}
|
| 491 |
|
| 492 |
+
# Get relevant chunks
|
| 493 |
+
retrieved_chunks = [store_data['chunks'][i] for i in indices[0]]
|
| 494 |
+
retrieved_metadata = [store_data['metadata'][i] for i in indices[0]]
|
| 495 |
+
|
| 496 |
+
# Create context
|
| 497 |
context_text = "\n\n".join([
|
| 498 |
+
f"[Source {i+1} - {meta['filename']}]:\n{chunk}"
|
| 499 |
for i, (chunk, meta) in enumerate(zip(retrieved_chunks, retrieved_metadata))
|
| 500 |
])
|
| 501 |
|
| 502 |
+
# Generate answer
|
| 503 |
answer = process_with_groq(request.query, context_text)
|
| 504 |
|
| 505 |
+
# Prepare sources
|
| 506 |
sources = [
|
| 507 |
{
|
| 508 |
"filename": meta['filename'],
|
|
|
|
| 525 |
logger.exception("Error in query_documents")
|
| 526 |
raise HTTPException(status_code=500, detail=f"Query failed: {str(e)}")
|
| 527 |
|
|
|
|
| 528 |
@app.get("/list_collections")
|
| 529 |
async def list_collections():
|
| 530 |
+
"""List all collections"""
|
| 531 |
+
collections = vector_store_manager.list_stores()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
return {"collections": collections}
|
| 533 |
|
|
|
|
| 534 |
@app.delete("/delete_collection/{collection_name}")
|
| 535 |
async def delete_collection(collection_name: str):
|
| 536 |
+
"""Delete a collection"""
|
| 537 |
+
try:
|
| 538 |
+
vector_store_manager.delete_store(collection_name)
|
| 539 |
+
return {"message": f"Collection '{collection_name}' deleted successfully"}
|
| 540 |
+
except Exception as e:
|
| 541 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 542 |
|
| 543 |
@app.get("/health_check")
|
| 544 |
async def health_check():
|
| 545 |
+
"""System health check"""
|
| 546 |
return {
|
| 547 |
"status": "healthy",
|
| 548 |
"supabase_configured": supabase is not None,
|
| 549 |
+
"groq_configured": groq_client is not None,
|
| 550 |
"embedding_model": "all-MiniLM-L6-v2",
|
| 551 |
+
"vector_stores": len(vector_store_manager.stores),
|
| 552 |
+
"total_chunks": sum(len(store['chunks']) for store in vector_store_manager.stores.values()),
|
| 553 |
+
"persistent_storage": PERSISTENT_STORAGE,
|
| 554 |
+
"collections": list(vector_store_manager.stores.keys())
|
| 555 |
}
|
| 556 |
+
|
| 557 |
+
# ==================== EXISTING WEB SCRAPING ENDPOINTS ====================
|
| 558 |
+
|
| 559 |
+
@app.post("/rag")
|
| 560 |
+
async def rag(request: RAGRequest):
|
| 561 |
+
"""Existing RAG endpoint for URL-based content"""
|
| 562 |
+
if not supabase:
|
| 563 |
+
raise HTTPException(status_code=500, detail="Supabase not configured")
|
| 564 |
+
|
| 565 |
+
try:
|
| 566 |
+
file_path = request.file_path
|
| 567 |
+
|
| 568 |
+
# Download from Supabase
|
| 569 |
+
file_content = supabase.storage.from_(bucket_name).download(file_path)
|
| 570 |
+
text = file_content.decode('utf-8')
|
| 571 |
+
data = json.loads(text)
|
| 572 |
+
|
| 573 |
+
# Extract text
|
| 574 |
+
full_text = ""
|
| 575 |
+
for item in data:
|
| 576 |
+
full_text += item.get("text", "") + " "
|
| 577 |
+
|
| 578 |
+
# Chunk text
|
| 579 |
+
chunk_size = 1000
|
| 580 |
+
chunks = [full_text[i:i+chunk_size] for i in range(0, len(full_text), chunk_size)]
|
| 581 |
+
|
| 582 |
+
# Get embeddings
|
| 583 |
+
chunk_embeddings = []
|
| 584 |
+
for chunk in chunks:
|
| 585 |
+
embedding = query({"inputs": chunk})
|
| 586 |
+
chunk_embeddings.append(embedding)
|
| 587 |
+
|
| 588 |
+
query_embedding = query({"inputs": request.prompt})
|
| 589 |
+
|
| 590 |
+
# Calculate similarity
|
| 591 |
+
similarities = []
|
| 592 |
+
for chunk_embedding in chunk_embeddings:
|
| 593 |
+
query_np = np.array(query_embedding)
|
| 594 |
+
chunk_np = np.array(chunk_embedding)
|
| 595 |
+
|
| 596 |
+
if len(query_np.shape) == 1:
|
| 597 |
+
query_np = query_np.reshape(1, -1)
|
| 598 |
+
if len(chunk_np.shape) == 1:
|
| 599 |
+
chunk_np = chunk_np.reshape(1, -1)
|
| 600 |
+
|
| 601 |
+
similarity = cosine_similarity(query_np, chunk_np)[0][0]
|
| 602 |
+
similarities.append(similarity)
|
| 603 |
+
|
| 604 |
+
# Get top 3 chunks
|
| 605 |
+
top_k = 3
|
| 606 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 607 |
+
relevant_chunks = [chunks[i] for i in top_indices]
|
| 608 |
+
context_text = "\n\n".join(relevant_chunks)
|
| 609 |
+
|
| 610 |
+
# Process with Groq
|
| 611 |
+
answer = process_with_groq(request.prompt, context_text)
|
| 612 |
+
|
| 613 |
+
sources = [{"text": chunks[i][:200] + "...", "position": i} for i in top_indices]
|
| 614 |
+
|
| 615 |
+
return {
|
| 616 |
+
"sources": sources,
|
| 617 |
+
"user_query": request.prompt,
|
| 618 |
+
"assistant_response": answer,
|
| 619 |
+
"file_source": f"supabase://{bucket_name}/{file_path}"
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
except Exception as e:
|
| 623 |
+
logger.exception("Error in RAG")
|
| 624 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 625 |
+
|
| 626 |
+
@app.post("/extract_links")
|
| 627 |
+
async def extract_links(url: URL):
|
| 628 |
+
"""Extract links from URL"""
|
| 629 |
+
def extract_unique_links(url_string, max_retries=3, timeout=30):
|
| 630 |
+
for attempt in range(max_retries):
|
| 631 |
+
try:
|
| 632 |
+
headers = {'User-Agent': random.choice(user_agents)}
|
| 633 |
+
response = requests.get(url_string, headers=headers, timeout=timeout)
|
| 634 |
+
response.raise_for_status()
|
| 635 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 636 |
+
|
| 637 |
+
base_url = urlparse(url_string)
|
| 638 |
+
base_url = f"{base_url.scheme}://{base_url.netloc}"
|
| 639 |
+
|
| 640 |
+
links = [urljoin(base_url, a.get('href')) for a in soup.find_all('a', href=True)]
|
| 641 |
+
unique_links = list(dict.fromkeys(links))
|
| 642 |
+
unique_links.insert(0, url_string)
|
| 643 |
+
return unique_links
|
| 644 |
+
except Exception as e:
|
| 645 |
+
if attempt < max_retries - 1:
|
| 646 |
+
time.sleep(5 * (attempt + 1))
|
| 647 |
+
else:
|
| 648 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 649 |
+
return []
|
| 650 |
+
|
| 651 |
+
try:
|
| 652 |
+
unique_links = extract_unique_links(url.url)
|
| 653 |
+
return {"unique_links": unique_links}
|
| 654 |
+
except Exception as e:
|
| 655 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 656 |
+
|
| 657 |
+
@app.post("/extract_text")
|
| 658 |
+
async def extract_text(urls: List[str]):
|
| 659 |
+
"""Extract text from URLs"""
|
| 660 |
+
if not supabase:
|
| 661 |
+
raise HTTPException(status_code=500, detail="Supabase not configured")
|
| 662 |
+
|
| 663 |
+
output_file = "extracted_text.txt"
|
| 664 |
+
|
| 665 |
+
def text_data_extractor(links):
|
| 666 |
+
extracted_texts = []
|
| 667 |
+
for link in links:
|
| 668 |
+
retries = 3
|
| 669 |
+
while retries > 0:
|
| 670 |
+
try:
|
| 671 |
+
headers = {'User-Agent': random.choice(user_agents)}
|
| 672 |
+
response = requests.get(link, headers=headers, timeout=30)
|
| 673 |
+
response.raise_for_status()
|
| 674 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 675 |
+
text = ' '.join(soup.get_text().split())
|
| 676 |
+
extracted_texts.append({"url": link, "text": text})
|
| 677 |
+
break
|
| 678 |
+
except:
|
| 679 |
+
retries -= 1
|
| 680 |
+
if retries > 0:
|
| 681 |
+
time.sleep(5)
|
| 682 |
+
|
| 683 |
+
if retries == 0:
|
| 684 |
+
extracted_texts.append({"url": link, "text": "Failed to retrieve"})
|
| 685 |
+
|
| 686 |
+
return extracted_texts
|
| 687 |
+
|
| 688 |
+
try:
|
| 689 |
+
extracted_data = text_data_extractor(urls)
|
| 690 |
+
string_output = json.dumps(extracted_data, ensure_ascii=False, indent=2)
|
| 691 |
+
|
| 692 |
+
# Upload to Supabase
|
| 693 |
+
file_content = string_output.encode('utf-8')
|
| 694 |
+
try:
|
| 695 |
+
supabase.storage.from_(bucket_name).upload(
|
| 696 |
+
path=output_file,
|
| 697 |
+
file=file_content,
|
| 698 |
+
file_options={"content-type": "text/plain"}
|
| 699 |
+
)
|
| 700 |
+
except:
|
| 701 |
+
supabase.storage.from_(bucket_name).update(
|
| 702 |
+
path=output_file,
|
| 703 |
+
file=file_content,
|
| 704 |
+
file_options={"content-type": "text/plain"}
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
return {"extracted_data": extracted_data, "file_saved": output_file}
|
| 708 |
+
except Exception as e:
|
| 709 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 710 |
+
|
| 711 |
+
# ==================== MAIN ====================
|
| 712 |
+
|
| 713 |
+
if __name__ == "__main__":
|
| 714 |
+
uvicorn.run(
|
| 715 |
+
"main_api:app",
|
| 716 |
+
host="0.0.0.0",
|
| 717 |
+
port=8000,
|
| 718 |
+
reload=False,
|
| 719 |
+
access_log=True
|
| 720 |
+
)
|