Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,7 +31,7 @@ def predict(task, model, text):
|
|
| 31 |
if model in ["ChatGPT", "GPT4"]:
|
| 32 |
# OpenAI API request
|
| 33 |
response = openai.ChatCompletion.create(
|
| 34 |
-
model=
|
| 35 |
messages=[{"role": "user", "content": text}]
|
| 36 |
)
|
| 37 |
return response['choices'][0]['message']['content']
|
|
@@ -43,48 +43,51 @@ def predict(task, model, text):
|
|
| 43 |
print(f"Error in prediction: {e}")
|
| 44 |
return {"error": str(e)}
|
| 45 |
|
| 46 |
-
|
| 47 |
# Function to benchmark Hugging Face models and OpenAI models
|
| 48 |
def benchmark(task, model, file):
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
predictions = []
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Define the Gradio interface
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
with gr.Row():
|
| 78 |
task_input = gr.Dropdown(TASKS, label="Task")
|
| 79 |
-
model_input = gr.Dropdown(list(MODELS.keys()) + ["ChatGPT", "
|
| 80 |
-
|
| 81 |
with gr.Tab("Predict"):
|
| 82 |
with gr.Row():
|
| 83 |
text_input = gr.Textbox(lines=2, placeholder="Enter text here...", label="Text")
|
| 84 |
predict_button = gr.Button("Predict")
|
| 85 |
predict_output = gr.JSON(label="Prediction Output")
|
| 86 |
predict_button.click(predict, inputs=[task_input, model_input, text_input], outputs=predict_output)
|
| 87 |
-
|
| 88 |
with gr.Tab("Benchmark"):
|
| 89 |
with gr.Row():
|
| 90 |
file_input = gr.File(label="Upload CSV for Benchmarking")
|
|
|
|
| 31 |
if model in ["ChatGPT", "GPT4"]:
|
| 32 |
# OpenAI API request
|
| 33 |
response = openai.ChatCompletion.create(
|
| 34 |
+
model="gpt-4" if model == "GPT4" else "gpt-3.5-turbo",
|
| 35 |
messages=[{"role": "user", "content": text}]
|
| 36 |
)
|
| 37 |
return response['choices'][0]['message']['content']
|
|
|
|
| 43 |
print(f"Error in prediction: {e}")
|
| 44 |
return {"error": str(e)}
|
| 45 |
|
|
|
|
| 46 |
# Function to benchmark Hugging Face models and OpenAI models
|
| 47 |
def benchmark(task, model, file):
|
| 48 |
+
try:
|
| 49 |
+
data = pd.read_csv(file.name)
|
| 50 |
+
texts = data['query'].tolist()
|
| 51 |
+
true_labels = data['answer'].tolist()
|
| 52 |
+
|
| 53 |
predictions = []
|
| 54 |
+
if model in ["ChatGPT", "GPT4"]:
|
| 55 |
+
for text in texts:
|
| 56 |
+
response = openai.ChatCompletion.create(
|
| 57 |
+
model="gpt-4" if model == "GPT4" else "gpt-3.5-turbo",
|
| 58 |
+
messages=[{"role": "user", "content": text}]
|
| 59 |
+
)
|
| 60 |
+
predictions.append(response['choices'][0]['message']['content'].strip())
|
| 61 |
+
else:
|
| 62 |
+
selected_pipeline = load_pipeline(task, model)
|
| 63 |
+
predictions = [selected_pipeline(text)[0]['label'] for text in texts]
|
| 64 |
+
|
| 65 |
+
accuracy = accuracy_score(true_labels, predictions)
|
| 66 |
+
precision, recall, f1, _ = precision_recall_fscore_support(true_labels, predictions, average='macro')
|
| 67 |
+
|
| 68 |
+
return {
|
| 69 |
+
"Accuracy": accuracy,
|
| 70 |
+
"Precision": precision,
|
| 71 |
+
"Recall": recall,
|
| 72 |
+
"F1 Score": f1
|
| 73 |
+
}
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Error in benchmarking: {e}")
|
| 76 |
+
return {"error": str(e)}
|
| 77 |
|
| 78 |
# Define the Gradio interface
|
| 79 |
with gr.Blocks() as demo:
|
| 80 |
with gr.Row():
|
| 81 |
task_input = gr.Dropdown(TASKS, label="Task")
|
| 82 |
+
model_input = gr.Dropdown(list(MODELS.keys()) + ["ChatGPT", "GPT4"], label="Model")
|
| 83 |
+
|
| 84 |
with gr.Tab("Predict"):
|
| 85 |
with gr.Row():
|
| 86 |
text_input = gr.Textbox(lines=2, placeholder="Enter text here...", label="Text")
|
| 87 |
predict_button = gr.Button("Predict")
|
| 88 |
predict_output = gr.JSON(label="Prediction Output")
|
| 89 |
predict_button.click(predict, inputs=[task_input, model_input, text_input], outputs=predict_output)
|
| 90 |
+
|
| 91 |
with gr.Tab("Benchmark"):
|
| 92 |
with gr.Row():
|
| 93 |
file_input = gr.File(label="Upload CSV for Benchmarking")
|