Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,25 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
-
import os
|
| 4 |
|
| 5 |
-
def compare_csv_files():
|
| 6 |
max_num = 10
|
| 7 |
|
|
|
|
| 8 |
df1 = pd.read_csv("result_1.5.csv")
|
| 9 |
df2 = pd.read_csv("result_1.4.csv")
|
| 10 |
|
| 11 |
-
|
|
|
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
merged_df["WordErrorRate_Diff"] = merged_df["WordErrorRate_1.5"] - merged_df["WordErrorRate_1.4"]
|
| 14 |
merged_df["CharacterErrorRate_Diff"] = merged_df["CharacterErrorRate_1.5"] - merged_df["CharacterErrorRate_1.4"]
|
| 15 |
|
|
|
|
| 16 |
merged_df["WordErrorRate_Comparison"] = merged_df["WordErrorRate_Diff"].apply(
|
| 17 |
lambda x: "1.4 is the same as 1.5 (Ignored due to large diff)" if abs(x) > max_num else (
|
| 18 |
f"1.5 is stronger than 1.4 ({x:.8f})" if x < 0 else (
|
|
@@ -28,6 +35,7 @@ def compare_csv_files():
|
|
| 28 |
)
|
| 29 |
)
|
| 30 |
|
|
|
|
| 31 |
avg_word_diff = merged_df["WordErrorRate_Diff"].loc[merged_df["WordErrorRate_Diff"].abs() <= max_num].mean()
|
| 32 |
avg_char_diff = merged_df["CharacterErrorRate_Diff"].loc[merged_df["CharacterErrorRate_Diff"].abs() <= 1].mean()
|
| 33 |
overall_summary = f"""
|
|
@@ -36,19 +44,25 @@ def compare_csv_files():
|
|
| 36 |
<p>Average CharacterErrorRate Difference (excluding large diffs): {f'1.5 is stronger ({avg_char_diff:.8f})' if avg_char_diff < 0 else f'1.4 is stronger ({0 - avg_char_diff:.8f})'}</p>
|
| 37 |
"""
|
| 38 |
|
|
|
|
| 39 |
result_html = overall_summary + merged_df[[
|
|
|
|
| 40 |
"SourceText",
|
| 41 |
"WordErrorRate_1.5", "WordErrorRate_1.4", "WordErrorRate_Comparison",
|
| 42 |
"CharacterErrorRate_1.5", "CharacterErrorRate_1.4", "CharacterErrorRate_Comparison",
|
| 43 |
-
# "WhisperText_1.5", "WhisperText_1.4"
|
| 44 |
]].to_html(escape=False, index=False)
|
| 45 |
|
| 46 |
return result_html
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
gr.Interface(
|
| 49 |
fn=compare_csv_files,
|
| 50 |
-
inputs=
|
| 51 |
outputs="html",
|
| 52 |
title="Fish Speech Benchmark",
|
| 53 |
-
description="
|
| 54 |
).launch()
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
|
| 4 |
+
def compare_csv_files(selected_languages):
|
| 5 |
max_num = 10
|
| 6 |
|
| 7 |
+
# Load data
|
| 8 |
df1 = pd.read_csv("result_1.5.csv")
|
| 9 |
df2 = pd.read_csv("result_1.4.csv")
|
| 10 |
|
| 11 |
+
# Merge with Language column
|
| 12 |
+
merged_df = pd.merge(df1, df2, on=["SourceText", "Language"], suffixes=("_1.5", "_1.4"))
|
| 13 |
|
| 14 |
+
# Filter by selected languages
|
| 15 |
+
if selected_languages:
|
| 16 |
+
merged_df = merged_df[merged_df["Language"].isin(selected_languages)]
|
| 17 |
+
|
| 18 |
+
# Calculate differences
|
| 19 |
merged_df["WordErrorRate_Diff"] = merged_df["WordErrorRate_1.5"] - merged_df["WordErrorRate_1.4"]
|
| 20 |
merged_df["CharacterErrorRate_Diff"] = merged_df["CharacterErrorRate_1.5"] - merged_df["CharacterErrorRate_1.4"]
|
| 21 |
|
| 22 |
+
# Add comparison columns
|
| 23 |
merged_df["WordErrorRate_Comparison"] = merged_df["WordErrorRate_Diff"].apply(
|
| 24 |
lambda x: "1.4 is the same as 1.5 (Ignored due to large diff)" if abs(x) > max_num else (
|
| 25 |
f"1.5 is stronger than 1.4 ({x:.8f})" if x < 0 else (
|
|
|
|
| 35 |
)
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Overall averages
|
| 39 |
avg_word_diff = merged_df["WordErrorRate_Diff"].loc[merged_df["WordErrorRate_Diff"].abs() <= max_num].mean()
|
| 40 |
avg_char_diff = merged_df["CharacterErrorRate_Diff"].loc[merged_df["CharacterErrorRate_Diff"].abs() <= 1].mean()
|
| 41 |
overall_summary = f"""
|
|
|
|
| 44 |
<p>Average CharacterErrorRate Difference (excluding large diffs): {f'1.5 is stronger ({avg_char_diff:.8f})' if avg_char_diff < 0 else f'1.4 is stronger ({0 - avg_char_diff:.8f})'}</p>
|
| 45 |
"""
|
| 46 |
|
| 47 |
+
# Generate result HTML
|
| 48 |
result_html = overall_summary + merged_df[[
|
| 49 |
+
"Language",
|
| 50 |
"SourceText",
|
| 51 |
"WordErrorRate_1.5", "WordErrorRate_1.4", "WordErrorRate_Comparison",
|
| 52 |
"CharacterErrorRate_1.5", "CharacterErrorRate_1.4", "CharacterErrorRate_Comparison",
|
|
|
|
| 53 |
]].to_html(escape=False, index=False)
|
| 54 |
|
| 55 |
return result_html
|
| 56 |
|
| 57 |
+
# Load unique languages from the data
|
| 58 |
+
df1 = pd.read_csv("result_1.5.csv")
|
| 59 |
+
df2 = pd.read_csv("result_1.4.csv")
|
| 60 |
+
languages = sorted(set(df1["Language"]).union(set(df2["Language"])))
|
| 61 |
+
|
| 62 |
gr.Interface(
|
| 63 |
fn=compare_csv_files,
|
| 64 |
+
inputs=gr.CheckboxGroup(choices=languages, label="Select Languages to Compare"),
|
| 65 |
outputs="html",
|
| 66 |
title="Fish Speech Benchmark",
|
| 67 |
+
description="Select specific languages to compare the results of WordErrorRate and CharacterErrorRate."
|
| 68 |
).launch()
|