Spaces:
Runtime error
Runtime error
| model = None | |
| sid = "" | |
| import io | |
| import gradio as gr | |
| import librosa | |
| import numpy as np | |
| import soundfile | |
| from inference.infer_tool import Svc | |
| import os | |
| def list_files_tree(directory, indent=""): | |
| items = os.listdir(directory) | |
| for i, item in enumerate(items): | |
| prefix = "└── " if i == len(items) - 1 else "├── " | |
| print(indent + prefix + item) | |
| item_path = os.path.join(directory, item) | |
| if os.path.isdir(item_path): | |
| next_indent = indent + (" " if i == len(items) - 1 else "│ ") | |
| list_files_tree(item_path, next_indent) | |
| from huggingface_hub import snapshot_download | |
| print("Models...") | |
| models_id = """None1145/So-VITS-SVC-Vulpisfoglia""" | |
| for model_id in models_id.split("\n"): | |
| if model_id in ["", " "]: | |
| break | |
| print(f"{model_id}...") | |
| snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}") | |
| print(f"{model_id}!!!") | |
| print("Models!!!") | |
| list_files_tree("./") | |
| import re | |
| models_info = {} | |
| models_folder_path = "./Models/None1145" | |
| folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))] | |
| for folder_name in folder_names: | |
| speaker = folder_name[12:] | |
| pattern = re.compile(r"G_(\d+)\.pth$") | |
| max_value = -1 | |
| max_file = None | |
| models_path = f"{models_folder_path}/{folder_name}/Models" | |
| config_path = f"{models_folder_path}/{folder_name}/Configs" | |
| for filename in os.listdir(models_path): | |
| match = pattern.search(filename) | |
| if match: | |
| value = int(match.group(1)) | |
| if value > max_value: | |
| max_value = value | |
| max_file = filename | |
| models_info[speaker] = {} | |
| models_info[speaker]["model"] = f"{models_path}/{max_file}" | |
| models_info[speaker]["config"] = f"{config_path}/config.json" | |
| if os.path.exists(f"{models_path}/feature_and_index.pkl"): | |
| models_info[speaker]["cluster"] = f"{models_path}/feature_and_index.pkl" | |
| elif os.path.exists(f"{models_path}/kmeans_10000.pt"): | |
| models_info[speaker]["cluster"] = f"{models_path}/kmeans_10000.pt" | |
| else: | |
| models_info[speaker]["cluster"] = "" | |
| speakers = list(models_info.keys()) | |
| def load(speaker): | |
| global sid | |
| global model | |
| sid = speaker | |
| model = Svc(models_info[speaker]["model"], models_info[speaker]["config"], cluster_model_path=models_info[speaker]["cluster"]) | |
| return "加载成功" | |
| load(speakers[0]) | |
| def vc_fn(input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale): | |
| global sid | |
| if input_audio is None: | |
| return "You need to upload an audio", None | |
| sampling_rate, audio = input_audio | |
| # print(audio.shape,sampling_rate) | |
| duration = audio.shape[0] / sampling_rate | |
| # if duration > 90: | |
| # return "请上传小于90s的音频,需要转换长音频请本地进行转换", None | |
| audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
| if len(audio.shape) > 1: | |
| audio = librosa.to_mono(audio.transpose(1, 0)) | |
| if sampling_rate != 16000: | |
| audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
| print(audio.shape) | |
| out_wav_path = "temp.wav" | |
| soundfile.write(out_wav_path, audio, 16000, format="wav") | |
| print( cluster_ratio, auto_f0, noise_scale) | |
| _audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale) | |
| return "Success", (44100, _audio) | |
| app = gr.Blocks() | |
| with app: | |
| with gr.Tabs(): | |
| with gr.TabItem("Model"): | |
| speaker = gr.Dropdown(label="讲话人", choices=speakers, value=speakers[0]) | |
| model_submit = gr.Button("加载模型", variant="primary") | |
| model_output1 = gr.Textbox(label="Output Message") | |
| model_submit.click(load, [speaker], [model_output1]) | |
| with gr.TabItem("Basic"): | |
| # sid = gr.Dropdown(label="音色", choices=speakers, value=speakers[0]) | |
| vc_input3 = gr.Audio(label="上传音频") | |
| vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) | |
| cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) | |
| auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False) | |
| slice_db = gr.Number(label="切片阈值", value=-40) | |
| noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) | |
| vc_submit = gr.Button("转换", variant="primary") | |
| vc_output1 = gr.Textbox(label="Output Message") | |
| vc_output2 = gr.Audio(label="Output Audio") | |
| vc_submit.click(vc_fn, [vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2]) | |
| app.launch() | |