File size: 8,804 Bytes
7f5506e 8580b64 7f5506e 8c2b68f 7f5506e 80d548a 5bb2e1e 06c0fa4 7f5506e 06c0fa4 7f5506e 5bb2e1e 06c0fa4 7f5506e 32de2c3 7f5506e 9252209 0b4b222 7f5506e 9fec70b 9252209 9fec70b 32de2c3 0b4b222 32de2c3 0b4b222 32de2c3 0b4b222 32de2c3 0b4b222 9252209 32de2c3 0b4b222 32de2c3 0b4b222 32de2c3 9252209 32de2c3 0b4b222 32de2c3 7f5506e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from huggingface_hub import list_models, model_info
from datetime import datetime
from datasets import Dataset, load_dataset
import pandas as pd
import os
import globals
from typing import List, Tuple
def get_models_providers() -> List[Tuple[str, List[str]]]:
"""Get list of popular text generation models and associated providers from Hugging Face"""
models = list_models(
filter="text-generation",
sort="likes",
direction=-1,
limit=globals.NUM_MODELS_RUN,
expand="inferenceProviderMapping"
)
model_providers = [
(model.id, [p.provider for p in model.inference_provider_mapping])
for model in models
if hasattr(model, 'inference_provider_mapping') and model.inference_provider_mapping
]
return model_providers
def initialize_models_providers_file(file_path: str = globals.LOCAL_CONFIG_FILE) -> str:
"""Initialize the models_providers.txt file with popular models and their providers."""
model_to_providers = get_models_providers()
with open(file_path, 'w') as f:
f.write("# Models and Providers Configuration\n")
f.write("# Format: model_name provider_name\n")
f.write(f"# Auto-generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
count = 0
for (model_id, providers) in model_to_providers:
try:
for provider in providers:
f.write(f"{model_id} {provider}\n")
count += 1
except Exception as e:
print(f"Error processing model {model_id}: {e}")
continue
print(f"Successfully wrote {count} model-provider combinations to {file_path}")
return f"Initialized {count} model-provider combinations", load_models_providers_str()
def load_models_providers_str(file_path: str = globals.LOCAL_CONFIG_FILE) -> str:
mp_list = load_models_providers(file_path)
return "\n".join([f"{model} : {provider}" for (model, provider) in mp_list])
def load_models_providers(file_path: str = globals.LOCAL_CONFIG_FILE) -> List[Tuple[str, str]]:
"""Load models and providers from text file. Creates file if it doesn't exist."""
models_providers = []
try:
# Check if file exists, if not, create it
if not os.path.exists(file_path):
print(f"Config file {file_path} not found. Initializing...")
initialize_models_providers_file(file_path)
with open(file_path, 'r') as f:
for line in f:
line = line.strip()
# Skip empty lines and comments
if line and not line.startswith('#'):
parts = line.split()
if len(parts) >= 2:
model = parts[0]
provider = parts[1]
models_providers.append((model, provider))
except Exception as e:
print(f"Error loading model providers: {str(e)}")
import traceback
traceback.print_exc()
return models_providers
def save_results() -> None:
"""Persist job results to HuggingFace dataset."""
try:
if not globals.job_results:
print("No results to save")
return
records = list(globals.job_results.values())
df = pd.DataFrame(records)
dataset = Dataset.from_pandas(df)
# Push to HuggingFace Hub
dataset.push_to_hub(
globals.RESULTS_DATASET_NAME,
token=os.getenv("HF_TOKEN"),
private=False
)
print(f"Saved {len(records)} results to dataset")
except Exception as e:
print(f"Error saving results to dataset: {e}")
def load_results() -> None:
"""Load job results from HuggingFace dataset."""
try:
# Try to load existing dataset
dataset = load_dataset(
globals.RESULTS_DATASET_NAME,
split="train",
token=os.getenv("HF_TOKEN")
)
# Convert dataset to job_results dict
for row in dataset:
key = globals.get_model_provider_key(row["model"], row["provider"])
globals.job_results[key] = {
"model": row["model"],
"provider": row["provider"],
"last_run": row["last_run"],
"status": row["status"],
"current_score": row["current_score"],
"previous_score": row["previous_score"],
"job_id": row["job_id"],
"start_time": row.get("start_time"),
"duration": row.get("duration"),
"completed_at": row.get("completed_at"),
"runs": row.get("runs", []),
"score_variance": row.get("score_variance")
}
print(f"Loaded {len(globals.job_results)} results from dataset")
except Exception as e:
print(f"No existing dataset found or error loading: {e}")
print("Starting with empty results")
def style_status(val):
"""Style function for status column."""
if val == "COMPLETED":
return 'background-color: green'
elif val == "ERROR":
return 'background-color: red'
elif val == "RUNNING":
return 'background-color: blue'
return ''
def get_summary_stats():
"""Get summary statistics of job results."""
if not globals.job_results:
return "π **Status:** No jobs yet"
total = len(globals.job_results)
running = sum(1 for info in globals.job_results.values() if info.get("status") == "RUNNING")
completed = sum(1 for info in globals.job_results.values() if info.get("status") == "COMPLETED")
failed = sum(1 for info in globals.job_results.values() if info.get("status") in ["ERROR", "FAILED"])
return f"π **Total:** {total} | π΅ **Running:** {running} | β
**Completed:** {completed} | β **Failed:** {failed}"
def get_results_table():
"""Return job results as a styled pandas DataFrame for Gradio DataFrame."""
if not globals.job_results:
return pd.DataFrame(columns=["Model", "Provider", "Runs", "Last Run", "Status", "Mean Score", "Variance", "Previous Score", "Duration", "Completed At", "Latest Job Id"])
table_data = []
for key, info in globals.job_results.items():
# Format mean score
current_score = info.get("current_score", "N/A")
if current_score is not None and isinstance(current_score, (int, float)):
current_score = f"{current_score:.4f}"
# Format variance
variance = info.get("score_variance", "N/A")
if variance is not None and isinstance(variance, (int, float)):
variance = f"{variance:.6f}"
# Format previous score
previous_score = info.get("previous_score", "N/A")
if previous_score is not None and isinstance(previous_score, (int, float)):
previous_score = f"{previous_score:.4f}"
# Count runs
runs = info.get("runs", [])
completed_runs = sum(1 for run in runs if run.get("status") == "COMPLETED")
total_runs = len(runs)
runs_str = f"{completed_runs}/{total_runs}" if runs else "0/0"
# Format duration
duration = info.get("duration")
if duration is not None and isinstance(duration, (int, float)):
# Convert seconds to minutes and seconds
minutes = int(duration // 60)
seconds = int(duration % 60)
duration_str = f"{minutes}m {seconds}s"
else:
duration_str = "N/A"
# Get completion time
completed_at = info.get("completed_at", "N/A")
job_id = info.get("job_id", "N/A")
# Create a clickable link for the job ID
if job_id != "N/A":
job_url = f"https://hf.co/jobs/{globals.NAMESPACE}/{job_id}"
job_link = f'{job_id}: <a href="{job_url}" target="_blank">π</a> '
else:
job_link = job_id
# Create relaunch link with data attributes for JavaScript to access
model = info["model"]
provider = info["provider"]
relaunch_link = 'π Relaunch'
table_data.append([
model,
provider,
runs_str,
info["last_run"],
info["status"],
current_score,
variance,
previous_score,
duration_str,
completed_at,
job_link,
relaunch_link
])
df = pd.DataFrame(table_data, columns=["Model", "Provider", "Runs", "Last Run", "Status", "Mean Score", "Variance", "Previous Score", "Duration", "Completed At", "Job Id and Logs", "Actions"])
# Apply styling to the Status column
styled_df = df.style.map(style_status, subset=['Status'])
return styled_df
|