from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai import os from dotenv import load_dotenv def list_available_models(): models = genai.models.list_models() print("Available models:") for model in models: print(f"Name: {model.name}") print(f"Description: {model.description}") print(f"Supported methods: {', '.join(model.supported_methods)}") print("\n") def get_response(file, query): # Load environment variables load_dotenv() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=400) context = '\n\n'.join(str(p.page_content) for p in file) data = text_splitter.split_text(context) # Specify the correct model name based on your requirements model_name = 'models/chat-bison-001' # Specify the API key directly in the code google_api_key = os.getenv("GOOGLE_API_KEY") embeddings = GoogleGenerativeAIEmbeddings(model=model_name, google_api_key=google_api_key) searcher = Chroma.from_texts(data, embeddings).as_retriever() ques = 'Which country has maximum GDP?' records = searcher.get_relevent_documents(ques) prompt_template = """ You have to give the correct answer to the question from the provided context and make sure you give all details\n Context: {context}\n Question: {question}\n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variable=['context', 'question']) model = ChatGoogleGenerativeAI(model=model_name, temperature=0.5) chain = load_qa_chain(model, chain_type='stuff', prompt=prompt) response = chain( { 'input_document': records, 'question': query }, return_only_output=True ) return response['output_text']